What's Going On?

Checking In

Minds on Factor!

Action! Solve by Factoring!

Consolidation Special Cases

Learning Goal - I will be able to "solve" quadratic equations by factoring.

Factoring when a = 1!

$$ax^2 + bx + c$$

$$x^2 + 7x + 12$$

Find two numbers that add to b and multiply to c

$$(x + 3)(x + 4)$$

Factoring when $\mathbf{a} \neq \mathbf{1}$!

$$ax^2 + bx + c$$

$$2x^2 - 6x - 20$$

Common Factor

$$2(x^2 - 3x - 10)$$

Find two numbers that add to -3 and multiply to -10

$$2(x - 5)(x + 2)$$

Factor

$$-0.5x^{2}+2x+6$$

 $=-0.5(x^{2}-4x-12)$
 $=-0.5(x+2)(x-6)$

Factor It!

With a partner, factor one of the standard form equations from yesterday.

When you are done, find your factored-form equation and tape it to the corresponding poster! (Use the standard form equation you started with to find your poster.

Factor It!

Now, look at the <u>factored-form equation</u> that goes with each poster... what do you notice?

Make it So!

When is the statement below true?

$$2(a)(b) = 0$$

This equation holds when **either a** is 0, **or** when **b** is 0.

Make it So!

When is the statement below true?

$$2(x - 4)(x + 3) = 0$$
Holds when $x - 4 = 0$ OR when $x + 3 = 0$

$$x = +4$$

$$x = -3$$

Factored Form

A quadratic equation in factored typically looks like:

$$a(x - x_1)(x - x_2) = 0$$

where x_1 and x_2 are the <u>roots</u> of the equation.

Solving by Factoring when **a** = 1!

$$ax^2 + bx + c = 0$$

$$x^2 + 7x + 12 = 0$$

Find two numbers that add to b and multiply to c

$$(x + 3)(x + 4) = 0$$

Therefore, we have roots when:

$$(x + 3) = 0$$
 AND $(x + 4) = 0$
 $X = -3$ $X = -4$
... the roots are $X = -3-4$

Factoring when $\mathbf{a} \neq \mathbf{1}$!

$$ax^2 + bx + c = 0$$

$$2x^2 - 6x - 20 = 0$$

Common Factor

$$2(x^2 - 3x - 10) = 0$$

Find two numbers that add to -3 and multiply to -10

$$2(x + 2)(x - 5) = 0$$

Therefore, we have roots when:

$$(x + 2) = 0$$
 AND $(x - 5) = 0$
 $x = -2$ $x = 5$
 $x = -2$
 $x = -2$

Solving by Factoring when $a \neq 1!$

$$6x^2 + 13x - 5 = 0$$

Find two numbers that add to b and multiply to ac

Break up the middle term

$$6x^2 + 15x - 2x - 5 = 0$$

$$3x(2x + 5) - 1(2x + 5) = 0$$

$$(3x - 1)(2x + 5) = 0$$

Factor by
Grouping

$$(3x - 1)(2x + 5) = 0$$

We can find the roots by setting <u>either</u> set of brackets to zero and solving for x.

$$(3x - 1) = 0 (2x + 5) = 0$$

$$3x - 1 = 0$$

$$2x + 8 = 0$$

$$8x = -5$$

$$x = -3$$

$$(3x - 1)(2x + 5) = 0$$

But hold on!! That's not in the form:

$$a(x - x_1)(x - x_2) = 0$$

It's true :(
Sometimes,
life is complicated.

- Steps to Solving by Factoring
 1. If there are fractions, clear the fractions by multiplying by the <u>LCD</u>.
- 2. Move everything to the left side.
- 3. Expand / simplify the quadratic equation into $ax^2 + bx + c$ form.
- 4. Factor fully, using the methods from Unit 4.
- 5. Use the <u>zero product property</u>(set the contents of each set of brackets to 0 and solve for x)

The values of x are the roots of your equation!

Special Cases

Solving $ax^2 + bx + c$ by factoring when c = 0. "Solve" $3x^2 + 5x = 0$ (x)(3x+5)=0(x) = C(3x+S)= . The roots are $X=0,-\frac{5}{3}$.

Special Cases

Solving $ax^2 + bx + c$ by factoring when b = 0.

"Solve"
$$2x^2 - 18 = 0$$

$$2(x^2 - 9) = 0$$

$$2(x+3)(x-3) = 0$$
.. the roots are $x=-3+3$

Special Cases

Solving $ax^2 + bx + c$ with fractions.

"Solve"
$$\frac{x^2}{6} - \frac{4x}{3} = -2$$

1. clear fractions

$$\begin{array}{c}
2. \text{ move} \\
2. \text{ move} \\
\text{everything} \\
\text{to left side}
\end{array}$$

$$\begin{array}{c} \text{3. factor} \\ \text{X-2=0} \quad \text{ad} \quad \text{X-6=0} \end{array}$$
4. use zero product property

3. factor

$$X=2$$
 $X=6$ 5. solve for x

Homework

2DB2 Quadratics II - Day 2 (Solving by Factoring) - Student Input.noteboolDecember 04, 2012