What's Going On?

Checking In

Minds on sin, cos or tan?

Action! Solving for angles.

Consolidation Exit Card

Learning Goal - I will use sin⁻¹, cos⁻¹ and tan⁻¹ to solve for angles in right triangles.

Checking In

F.F.M.

Name: _____ Date:____

$$2.475 = 28.9$$

$$1 = 28.9$$

$$2.475$$

$$1 = 11.7$$

Checking In

Entry Card

Name: _____

Determine the length of side q.

Checking In

Unit Test Next Tuesday

In-Class Assignment Tomorrow

We can use sin, cos and tan to determine the **measures of angles** in right triangles.

Before we can do anything else, we need to decide which trig ratio we are going to use!!

How can we do that?

Determine the measure of <u>angle A</u> to one decimal place.

Finding Angles in Right Triangles

- 1. Identify the reference angle (the angle we want!)
- 2. Determine our "sides of interest" (the sides we have!)
- 3. Our sides of interest tell us which trig ratio to use.
 - opposite and hypotenuse \longrightarrow 5' \bigcirc 50H
 - adjacent and hypotenuse COS CAY
 - opposite and adjacent +an TOA

Determine the measure of angle M.

Determine the measure of angle \triangle

Determine the measure of angle

Determine the measure of angle $\overline{2}$

Determine the measure of angle .

Solving for Angles

To solve for an angle in a right triangle:

- 1. Decide if you are going to use sin, cos or tan.
- 2. Set up your trig ratio using sin, cos or tan.
- 3. Plug in your values. $\frac{2.3}{5.6}$
- 4. Evaluate your ratio to 4 decimal places.
- 5. Use the "inverse" sin, cos or tan button with the number you found in Step 4 to determine your angle. Round to the nearest whole degree.

Inverse?!

If we had, for example, that

$$\sin\left(A\right) = \frac{3}{5}$$

This just means that for some angle A in a right triangle, the ratio of the opposite side to the hypotenuse is 3/5 or 0.6

$$\sin(A) = 0.6$$

$$A = \sin^{-1}(0.6)$$

We want to know, what angle has a sine of 0.6?

$$A = \sin^{-1}(0.6)$$

Inverse?!

We use sin cos tan when we have an angle

We use sin-1 cos-1 tan-1 when we want an angle.

Solving for Angles

Determine the measure of <u>angle A</u> to one decimal place.

4.1 cm
$$\frac{16.6 \text{ cm}}{140}$$

$$\frac{16.6 \text{ cm}}{16.0}$$

$$\frac{16.0 \text{ cm}}{16.0 \text{ cm}}$$

$$\frac{16.0 \text{ cm}}{16.0}$$

$$\frac{16.0 \text{ cm}}{16.0 \text{ cm}}{16.0}$$

$$\frac{16.0 \text{ cm}}{16.0}$$

$$\frac{16.0 \text{ cm}}{16$$

Consolidation

Exit Card

Name:

Determine the measure of Angle H.

