MFM2P - Linear Systems - Day 6: Solving by Substitution Part II

Solve each system of linear equations

1.
$$x + y + 4 = 0$$
 and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

1. $x + y + 4 = 0$ and $4x - 2y - 2 = 0$

2. $x + y + 4 = 0$ and $4x -$

$$2. C = -3d + 7 \text{ an}$$

$$C = -3d + 7$$

$$C = -3(1) + 7$$
 $C = 7(1) + 2$
 $C = -3 + 7$ $C = 2 + 2$
 $C = 4$

: the POI is (14)

3.
$$-2x + 4y = 0$$
 and $x + y = -6$.
 $-2x + 4y = 0$ $x + 4y = -6$
 $+2x + 2x - x - x$
 $4y = 2x$
 $4y = 2x$
 $4y = -2x$
 $4y = -2x$

$$0.5x = -1/4 - 6$$

$$1.5/x = -6$$

4.
$$2x-2y=8$$
 and $5x+y=2$.
 $2x-2y=8$ $5x+y=2$ $-5x$ $-5x$ $-2x$ $-2x$ $-2x$ $-5x$ $-2x$ $-2x$

- 7. Lydia works at an electronics store. Her annual salary is represented by the equation $S = 26\ 500 + 20n$ where n is the number of television sets sold. Calvin works at another electronics store that pays an annual salary of S = 28000 + 15n.
 - a. How many television sets must be sold for Lydia and Calvin to earn the same salary?
 - b. When does Lydia earn more money than Calvin?
 - c. When does Calvin earn more money than Lydia?

- 8. Daisy wants high-speed internet. Company A charges an \$80 installation fee plus \$30 per month. Company B charges a \$100 installation fee plus \$25 per month.
 - a. After how many months are the costs the same?