Quadratic Relations: Day 2
 Converting from Factored Form to Standard Form

Previously, we learned how to convert factored form quadratic equations into standard form quadratic equations using THE GRID METHOD.

Now, we will learn how to do the very same thing, but this time using FOIL.

Expanding Factored Form Quadratic Equations Using FOIL

$$
\text { Expand: } y=(x-5)(x+3)
$$

Therefore, the factored form equation $y=(x-5)(x+3)$ is equivalent to the standard form equation $y=x^{2}-2 x-15$. Both equations will produce the same parabolic graph!

$$
\begin{aligned}
& \text { Expand: } y=(x+2)(x+3) \\
& y=x^{2}+3 x+2 x+6 \\
& \text { Expand: } y=(x+6)(x-5) \\
& y=x^{2}-5 x+6 x-30 \\
& y=x^{2}+5 x+6 \\
& y=x^{2}+x-30 \\
& \text { Expand: } y=(x-8)(x+4) \\
& y=x^{2}+4 x-8 x-32 \\
& \text { Expand: } y=(x+2)(x-2) \\
& y=x^{2}-4 x-32 \\
& y=x^{2}-2 x+2 x-4 \\
& y=x^{2}-4 \\
& \text { Expand: } y=(x-1)(x-8) \\
& y=x^{2}-8 x-1 x+8 \\
& \text { Expand: } y=(x-7)(x-4) \\
& y=x^{2}-4 x-7 x+28 \\
& y=x^{2}-9 x+8 \\
& y=x^{2}-11 x+28 \\
& \text { Expand: } y=(x+3)(x+3) \\
& y=x^{2}+3 x+3 x+9 \\
& y=x^{2}-5 x-5 x+25 \\
& y=x^{2}+6 x+9 \\
& y=x^{2}-10 x+25
\end{aligned}
$$

