Quadratic Relations: Day 3 - Finding x-Intercepts and y-intercepts

Move around the room and fill in this table using the blue and green parabolas that you posted on Monday.

Factored Form Equation $\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}+\boldsymbol{r})(\boldsymbol{x}+\boldsymbol{s})$	Standard Form Equation $\boldsymbol{y}=\boldsymbol{a x} \boldsymbol{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}$	\boldsymbol{r}	\boldsymbol{s}	\boldsymbol{c}	Zeros / x-Intercepts	y -Intercept

Look for relationships in your table on the other side of this sheet.

How can you determine the zeros / x-intercepts of a parabola from its factored form equation?

How can you determine the y-intercept of a parabola from its standard form equation?

How can you determine the y-intercept of a parabola from its factored form equation?

Determine the features of the parabola defined by $y=(x+1)(x-5)$, then graph the parabola.

