Quadratic Relations: Factoring
When we want to factor the equation $\mathrm{y}=\mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}$, we need to find two numbers, r and s, that $a d d$ to the middle number (b), and mu lt iply to the last number (c).

1. Complete the table:

one positive
ore regativit"

Given the standard form of the quadratic relation, identify the value of the sum and product needed to factor. Express the relation in factored form, identify the x-intercepts and y-intercept, and use these results to make a sketch of each parabola.

	Standard Form	Product and Sum	Pair of Numbers	Factored Form	x-intercepts	\boldsymbol{y}-intercept
A	$y=x^{2}+6 x+5$	$r \times s=5$ $r+s=6$	$r=1$, $s=5$	$y=(x+1)(x+5)$	-1 and -5	5
B	$y=x^{2}-4 x-5$	$r \times s=-5$ $r+s=-4$				
C	$y=x^{2}+4 x-5$	$r \times s=-5$ $r+s=4$				
D	$y=x^{2}-6 x+5$	$r \times s=5$ $r+s=-6$				
E	$y=x^{2}+7 x+6$	$r \times s=6$ $r+s=7$				
F	$y=x^{2}-6 x+9$	$r \times s=$ $r+s=$				
G	$y=x^{2}-x-6$	$r \times s=$ $r+s=$				
H	$y=x^{2}+13 x+12$	$r \times s=$ $r+s=$				
I	$y=x^{2}-4 x-12$	$r \times s=$ $r+s=$				
J	$y=x^{2}+x-12$	$r \times s=$ $r+s=$				

Sketch of the relation
A

E

F

G

I

J

