Quadratic Relations: Factoring

When we want to factor the equation $y = x^2 + bx + c$, we need to find two numbers, *r* and *s*, that \overrightarrow{odd} to the middle number (b), and $\underbrace{outfiply}_{r}$ to the last number (c).

1. Complete the table:

Given the standard form of the quadratic relation, identify the value of the sum and product needed to factor. Express the relation in factored form, identify the *x*-intercepts and *y*-intercept, and use these results to make a sketch of each parabola.

	Standard Form	Product and Sum	Pair of Numbers	Factored Form	<i>x</i> -intercepts	y-intercept
Α	$y = x^2 + 6x + 5$	r × s = 5 r + s = 6	r = 1, s = 5	y = (x+1)(x+5)	–1 and –5	5
в	$y=x^2-4x-5$	r × s = -5 r + s = -4				
С	$y = x^2 + 4x - 5$	r × s = -5 r + s = 4				
D	$y = x^2 - 6x + 5$	r × s = 5 r + s = –6				
Е	$y = x^2 + 7x + 6$	r × s = 6 r + s = 7				
F	$y = x^2 - 6x + 9$	r × s = r + s =				
G	$y = x^2 - x - 6$	r × s = r + s =				
н	$y = x^2 + 13x + 12$	r × s = r + s =				
I	$y = x^2 - 4x - 12$	r × s = r + s =				
J	$y = x^2 + x - 12$	r × s = r + s =				

Sketch of the relation

