Quadratic Relations: Day 5 - Common Factoring

Today, we will learn how to factor quadratics in standard form when the \boldsymbol{a}-value is not $\mathbf{1}$.

Factoring Quadratic Equations in the Form $y=a x^{2}+b x+c$
Factor: $y=2 x^{2}-4 x-30$

First, factor out the a-value from every term!

$$
y=2 x^{2}-4 x-30 \quad \text { BECOMES } \quad y=2\left(x^{2}-2 x-15\right)
$$

List all possible factors of the c inside the brackets (In this case, $\mathrm{c}=-15$)

$$
+1,-15
$$

If c is negative, you must have a negative factor and a positive factor.

$$
-1,+15
$$

If c is positive and b is positive you must

$$
+3,-5
$$ have two positive factors.

$$
-3,+5
$$

If c is positive and b is negative you must have two negative factors.

Determine which set of factors sums to the b inside the brackets

Therefore, the standard form equation $y=2 x^{2}-4 x-30$ is equivalent to the factored form equation $y=2(x-5)(x+3)$. Both equations will produce the same parabolic graph!

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{c}
\text { Factor out } a \\
\text { from each } \\
\text { term! }
\end{array} \\
\text { Factor: } y=\frac{2 x^{2}}{2}+\frac{10 x}{2}+\frac{12}{2} \quad \text { Factor: } y=\frac{3 x^{2}}{3}+\frac{3 x}{3}-\frac{90}{3}
\end{array} \\
& y=2\left(x^{2}+5 x+6\right) \quad y=3\left(x^{2}+x-30\right) \\
& y=2(x+2)(x+3) \quad y=3(x+6)(x-5) \\
& \text { Factor: } y=\frac{3 x^{2}}{3}-\frac{12 x}{3}-\frac{96}{3} \quad \text { Factor: } y=\frac{4 x^{2}}{4}-\frac{4 x}{4}-\frac{24}{4} \\
& y=3\left(x^{2}-4 x-32\right) \\
& y=3(x-8)(x+4) \\
& y=4\left(x^{2}-x-6\right) \\
& y=4(x-3)(x+2) \\
& X^{\text {Factor: } y=\frac{4 x^{2}}{4}-\frac{20 x}{4} \quad X^{\text {rEactor: } y=}=\frac{2 x^{2}}{2}-\frac{18}{2}} \\
& y=4(\underbrace{x^{2}-5 x}) \quad y=2\left(x^{2}-9\right) \\
& y=4 x(x-5) \quad y=2(x+3)(x-3)
\end{aligned}
$$

