Factoring Special Cases

Factoring a Difference of Squares

Standard Form Equation	Factored Form Equation	y-Intercept	Zeros	Axis of Symmetry
$y=x^2-1$	Y=(x+1)(x-1)	1	-1,+1	
$y=x^2-4$	Y=(X+2)(x-2)	7	-2,+2	
$y=x^2-9$	Y=(A-3)(4-3)	-9	-3,13	0
$y = x^2 - 16$	y=(x+4)(x-4)	-16	-4,+4	0
$y = x^2 - 25$	y=(x+5)x-5)	-25	-5,+5	
$y = x^2 - 36$	Y=(x+10)(x-6)	-36	-6,+6	

What do all the differences of squares have in common?

Factoring a Quadratic in the Form $y = x^2 + bx$

Standard Form Equation	Factored Form Equation	y-Intercept	Zeros	Axis of Symmetry
$y = x^2 - 5x$	Y=x(x-5)		0,5	as z = 2,5
$y = x^2 - 2x$	Y=X(X-2)		0,2	012 = 1
$y = x^2 - x$	+×(x-1)		0,+1	0+1=0.5 z=0.5
$y = x^2 + x$	1=X(X+1)	0	0,-1	-0.5
$y = x^2 + 2x$	Y=x(x+2)	0	0,-2	-
$y = x^2 + 7x$	Y=X(A7)		0,-7	-35

What do all of the relations in the table above have in common?