Factoring Special Cases

Factoring a Difference of Squares

Standard Form Equation	Factored Form Equation	y-Intercept	zeros	Axis of Symmetry
$y=x^{2}-1$	$y=(x+1)(x-1)$	-1	$-1,+1$	
$y=x^{2}-4$	$y=(x+2)(x-2)$	-4	$-2,+7$	
$y=x^{2}-9$	$y=(x+3)(x-3)$	-9	$-2,+2$	

What do all the differences of squares have in common?

Factoring a Quadratic in the Form $y=x^{2}+b x$

Standard Form Equation	Factored Form Equation	y-Intercept	Zeros	Axis of Symmetry
$y=x^{2}-5 x$	$y=x(x-5)$		$0,5$	$\frac{A S}{2}=25$
$y=x^{2}-2 x$	$y=x(x-2)$		0,2	$\frac{0+2}{2}=1$
$y=x^{2}-x$	$y=x(x-1)$		$0,+1$	$\frac{0+1}{2}=0.3$
$y=x^{2}+x$	$y=x(x+1)$		$0,-1$	$-0, G$
$y=x^{2}+2 x$	$y=x(x+2)$		$0,-2$	-1
$y=x^{2}+7 x$	$1=x(x+7)$			-25

What do all of the relations in the table above have in common?

