Forms of A Quadratic - Standard Form: $y=a x^{2}+b x+c$

- The y-intercept is the \qquad aust or \qquad <term.
- We can change factored into standard form by \qquad expanding
- There are two methods of expanding: \qquad The Grid and .

Example 1: Find the y-intercept, x-intercepts of the following quadratic:

$$
y=(x+4)(x-5)
$$

Example 2: Expand the following: $y=2 x(3 x-4)$

$$
y=6 x^{2}-8 x
$$

4. Forms of A Quadratic - Factored Form: $\mathbf{y}=(x-r)(x-s)$

- There are two methods of factoring: algebra tiles and algebra
- Example: factor $\mathbf{y}=\mathbf{x}^{2}+\mathbf{3 x}+\mathbf{2}$ using tiles

1. $\frac{\text { Product/Sum Form: Factor } y=a x^{2}+b x+c}{\text { - In this case } r \times s=c \text { and } r+s=b} \quad y=(x+2)(x+1)$

- Find the x-intercepts of the following:

$$
\begin{aligned}
& y=x^{2}+6 x+8 \text { Two nomburs that } y=x^{2}-3 x-18 \text { Two numbers that } \\
& \text { mut talk to } 8 \text { and add to } 6 \text {. } \\
& \begin{array}{ll}
2+4 & 3+-6 \\
y=(x+2)(x+4) & y=(x+3)(x-6)
\end{array} \\
& 3+-6
\end{aligned}
$$

2. Common Factoring: $y=a x^{2}+b x$

- Let us factor: $y=x^{2}+3 x$

This can be written as:

- Factor and state the x and y intercepts of:

$$
\begin{aligned}
& y=x(x+6) \quad y=2(x-6)(x+5)
\end{aligned}
$$

zeros $=+6,-5$

