Lesson 4: Graphing Exponential in the Form $y=b^{x}$-iPad Investigation

1. On your iPad, open Desmos.
2. Enter the equation: $y=b^{x}$ and turn on the slider for b . (Use the a^{b} button)
3. The default value for b is 1 . You will notice a horizontal line with a y-intercept of 1 . Explain why this makes sense by first filling in the blanks below:

$$
1^{3}=1
$$

$$
1^{-8}=1
$$

$$
1^{0}=1
$$

$$
1^{x}=\downarrow
$$

1 times itself my number of fines is 1
Part 1: Investigating $y=b^{x}$ when $b>1$.
4. We are going to change the range of values that b can have. Click on the "-10" and change it to 1 . Leave the " 10 " as it is. Finally, set the step to 0.1 .
Play around with the slider.
Describe what happens to the curve as your b-value gets larger.

Ask Mr. Gilbert for your equation. Write in your equation and complete the table below. You can determine the y-values by touching the curve, then sliding your finger back and forth along the curve. The first number listed is the x-value, the second is the y-value.

*To determine the ratios of consecutive y-values, divide the y-value on the right by the y-value on the left.
5. What is your initial value? (the value of y when $x=0$)?

Explain why this makes sense in light of the exponent laws we learned earlier in the unit.

$$
\mid \rightarrow \text { Anything to the exponent zero is } \mid
$$

6. Compare your equation to your "ratios of consecutive y-values". What do you notice?
ratios ace the b-ualue
7. Visit at least 3 other students in the class who have different equations.
a. Provide their equation and their initial value (the value of y when $x=0$).

Does this make sense? Why or why not?
Yep'

0

b. Look at their equations and ratios of consecutive y-values.

Equation	Ratios of Consecutive y -Values
$V=3 x$	3

What do you notice? Ratios same as
babe!

$$
\begin{aligned}
& \text { yest this make sense? why or why not? } \\
& \text { tripling. .int one }\left(y=3^{x}\right) \text { we bl }
\end{aligned}
$$

Part 2: Investigating $y=b^{x}$ when $0<b<1$. (When b is between 0 and 1)

1. We are, again, going to change the range of values that b can have. Click on the " 1 " and change it to 0 . Click on the " 10 " and change it to 1 . Finally, set the step to 0.05 .
Play around with the slider.
Describe how these curves are different from the curves from Part 1.
These curves are decreasing.

Describe what happens to the curve as your b-value moves between 0 and 1. Be sure to specify the direction your b-value is moving.
As bets smaller the curves decrease faster.

*To determine the ratios of consecutive y-values, divide the y-value on the right by the y-value on the left.
2. Visit at least 3 other students in the class who have different equations.
a. Provide their equation and their initial value (the value of y when $x=0$).

Equation	Initial Value
$V-0,5^{x}$	1
$1=0,8^{x}$	1
$=0,2 x$	1

Does this make sense? Explain.
yep er mantling
b. Look at their equations and ratios of consecutive y-values.

Equation	Ratios of Consectivive y.values
$y=0.5^{x}$	0.5
$y=0.8^{x}$	0.8
$y=0.2^{x}$	0.2

What do you notice?
ratios are the base
Does this make sense? Why or why not?

Summary
Yes!

$$
\begin{aligned}
& \text { for } y=0.5^{x} \text {, we cat in } \\
& \text { hifferch time } x \text { goes ur }
\end{aligned}
$$

Based on your observations in this investigation, complete the table below.

Fill in the blanks:
For $y=2^{x}$, when the value of x increases by 1 , the value of y \qquad doubles .

For $y=0.5^{x}$, when the value of x increases by 1 , the value of y \qquad

