Half-Life
Time it takes for the mass of something to get \qquad cut in half

Examples

1. The half-life of a radioactive element is 6 hours. How much of 16 g sample remains after 24 hours?

$$
\begin{aligned}
& y=a \times 0.5^{t / 2} \\
& y=16 \times 0.5^{\frac{24}{6}}
\end{aligned} \frac{y=16 \times 0.5^{4}}{y=1 \text { lg remains }}
$$

2. The half-life of a radioactive element 69 days. How much of 150 g sample remains after 15 days?

$$
\begin{aligned}
& y=150 \times 0.5^{15 / 9} \\
& y=150 \times 0.5^{1.67} \Rightarrow 47.1 \mathrm{~g}
\end{aligned}
$$

Doubling Time
Time it takes for the level of something to \qquad cable

Examples

1. The doubling time of a bacterial strain s 3 hours. A strain starts with 4 cells. How many

$$
y=4 \times 2^{1 / 3} \Rightarrow y=4 \times 2^{5}
$$

2. The doubling time of a bacterial strain many cells are present after 36 hours?

Doubling Time

