Problem Solving with Exponential Growth and Decay

For each equation:

- 1. Identify the initial value.
- 2. Identify if we are looking at growth or decay.
- 3. Identify percent growth or percent decay.

$y = 4 \times 1.5^{x}$	$y = 850 \times 1.05^x$
initial value = 4	initial value = 850
growth > b=1.5	growth -> b=1.05
percent growth = 50%	% growth = 5%
$y = 1000 \times 1.25^x$	$y = 15,000 \times 1000^{\circ}$
nitial value = 1000	initial value = 15000
growth → 6=1,25	growth b=1.01
0/0 growth - 25%	% change = 1%
$y = 6 \times 0.5^{x}$	$y = 64 \times 0.25^x$
initial value = 6	intialvalue=64
beay -> b=0.5	tecay = b= 0.29
% secon = 5090	$\frac{1}{0} \left(\frac{1}{0} \right) = 0.75 = 0.75$ $y = 1,000 \times 0.05^{2}$
$y = 25,000 \times 0.81^x$	$y = 1,000 \times 0.05^{x}$
initial=25,000	1 1/1/III
Leay > b=0.61	NLIA - DEUVE
0) [100 [[[[[[[[[[[[[[[[[ALL ING GLACILI)
% hear = 100-61 = 190/0	% Je cay = 100-5=95%