Date:			

Learning Goal

This is how we factor!

Explain, in words, how to factor

$$y = x^2 + 7x + 12$$

Special Cases

Factoring $y = x^2 + bx + c$ when b = 0

Factor

$$y = x^2 - 81$$

This is called a _____

Special Cases

Factoring $y = x^2 + bx + c$ when both factors are the same!

Factor

$$y = x^2 + 6x + 9$$

This is called a _____

Factoring $y = x^2 + bx + c$ when c = 0

Factor

$$y = x^2 + 5x$$

Our first step is to	
----------------------	--

Find what both terms have _____

Our common factor in this case is _____

We must _____ both terms by the common factor.

Factoring $y = x^2 + bx + c$ when c = 0

Factor

$$y = 2x^2 + 8x$$

The greatest common factor is _____

Factoring $y = x^2 + bx + c$ when c = 0

Factor

$$y = -3x^2 + 12x$$

The greatest common factor is _____

Determine the greatest common factor for each.

a)
$$x^2 + 9x$$
 d) $2x^2 + 10x$ g) $-x^2 + 4x$

b)
$$x^2 - 6x$$
 e) $-5x^2 - 20x$ h) $3x^2 - 15x$

a)
$$x^2 + 9x$$
 d) $2x^2 + 10x$ g) $-x^2 + 4x$
b) $x^2 - 6x$ e) $-5x^2 - 20x$ h) $3x^2 - 15x$
c) $3x^2 + 12x$ f) $-4x^2 + 8x$ i) $2x^2 - 30x$