Date:			

Learning Goal

Unit 4 - Statistics

Day 1: One-Variable Data

Check Your Pulse.

Find your pulse.

We are going to count out our pulses for a period of 1 minute.

Now we will create a Frequency
Distribution Table and a Histogram
to represent this one variable data.

Step 1: Identify the **Minimum** and **Maximum** values.

Step 2: Determine the Range

Range = _____ - ____

Step 3: Use the range to determine how to split our data into intervals. (How many bars do we want?)

Typically between 5 and 20 bars.

Divide the range by 5	
AND	
Divide the range by 20	
We will have intervals between _	
and .	

Step 4: Decide on the **interval length**. (Pick a round number, 5, 10, 15, ...)

**Avoid overlap Insert a decimal place.

Pick a "nice" number between the numbers we found in Step 3.

Add a decimal place to avoid overlap.

Class Heart Rates Continued Now we will create a <u>Frequency Distribution</u> <u>Table</u> to represent this one variable data.

Heart Rate	Frequency	Cumulative
(x)	(f)	Frequency

Now we will create a <u>Histogram</u> to represent this one variable data.

Intervals

Use the procedure outlined to determine appropriate intervals to represent this data.

59	70	86	56
95	65	72	67
70	93	76	92
85	82	84	52
69	58	90	93
57	56	81	96

Intervals

Use the procedure outlined to determine appropriate intervals to represent this data.

66	79	53	81	84
76	76	67	64	83
92	56	67	77	91
61	71	86	73	87
71	67	71	81	86
72	62	77	91	72

Intervals

Use the procedure outlined to determine appropriate intervals to represent this data.

47	94	78	42	89	68
46	51	93	88	51	77
91	97	93	76	69	41
84	55	75	97	52	83
69	80	79	85	59	30
74	95	92	51	67	23
52	86	75	58	81	91
81	66	78	54	53	