Date:			

Learning Goal

The Compound Interest Formula

The Compound Interest Formula

Compound interest is	calculated at
•	

There are ____ different periods.

(these periods help determine the *i* and the *n* in the compound interest equation)

Daily
Weekly
Bi-Weekly
Monthly
Semi-monthly
Annually
Semi-annually
Quarterly

Interest Schedules

How many times does each schedule occur in one year?

Daily

Weekly

Bi-Weekly

Monthly

Semi-monthly

Annually

Semi-annually

Quarterly

To determine the value of i:

	_ the	
as a	by the number	er of
	periods in a	

Example: If you invested \$2,500 at 3% interest compounded weekly for 3 years.

Minding Your <u>i's</u> and n's

Example: If you invested \$		at	%
interest compounded		for	years
i =	_ ÷ _		
Example: If you invested \$		at	%

interest compounded _____ for ____ years.

Minding Your <u>i's</u> and n's

Example: If you invested \$		at	%
interest compounded		for	years
i =	_ ÷ _		
Example: If you invested \$		at	%

interest compounded _____ for ____ years.

To determine the value of n:

_____ the number of _____

periods in a _____ by the number of _____

the money is invested.

Example: If you invested \$2,500 at 3% interest compounded weekly for 3 years.

Example: If you invested \$	at	%
interest compounded	for	years
n =	×	
Example: If you invested \$	at	%
interest compounded	for	years

Example: If you invested \$	at	%
interest compounded	for	years
n =	×	
Example: If you invested \$	at	%
interest compounded	for	years

Solving for Future Value

If you invested	d \$	at	%
interest compo	ounded		
for	years how muc	h would yo	our
investment be	worth?		

Solving for Future Value

If you invested	d \$	_ at	_%
interest compo	ounded		
for	years how much v	vould you	r
investment be	worth?		

Solving for Future Value

If you invested	d \$	_ at	_%
interest compo	ounded		
for	years how much v	vould you	r
investment be	worth?		

Exit Question

You decide to invest \$5,000 for 3.5 years at 2.5% interest compounded monthly.

Identify the value of each variable in the compound interest formula, then determine the final value of the investment.

```
PV =
```