What's Going On?

Checking In Diagnosing Your Problems

Minds on Functions and Relations

Action! Function or Not?

Consolidation Hey equation, are you a function?

Learning Goal - I will be able to determine if a relation is a function from its mapping diagram, graph, table or equation.

Functions and Relations

1) Given the model of a car (i.e. Civic), can you determine the make of the car? (i.e. Honda).

Is this the only possible answer?

2) Given the make of a car (i.e. Honda), can you determine the model of the car? (i.e. Civic).

Functions and Relations

A <u>relation</u> is a set of ordered pairs where values of the <u>independent</u> variable are paired with values of the dependent variable.

NEW TERM

NEW TERM

NEW TERM

The <u>domain</u> of a relation is the set of all values of the independent variable.

The <u>range</u> of a relation is the set of all values of the dependent variable.

Domain, Range and Set Notation

Domain, Range and Set Notation

Functions and Relations

A function is a special relation.

On the next slide I will show you some examples of functions and some examples of non-functions.

Mapping Diagrams

In a mapping diagram the independent variable is always "mapped onto" the dependent variable"

Functions

Non-Functions

Functions and Relations

A function is a special relation.

Specifically, a <u>function</u> is a relation where each value of the independent variable corresponds with <u>only one</u> value of the dependent variable.

That's Punny!

'Olive' the functions that exist are relations!

But... 'olive' the relations that exist are *not* functions.

X	У
-1	-3
0	1
1	5
2	9

X	У
21	
22	0
45	5

	\times
Х	У
21	0
21	1
22	5
45	0

X	У
-1	5
0	5
1	5
2	5

X	У
-2	3
-1	0
0	-1
1	0
2	3

CLICK!

A function is a relation where each x-value

corresponds with only one y-value

*NOTE: We will not <u>always</u> be using 'x' and 'y'. I use them for this example only because you are used to creating tables of values and graphs with x as the independent variable and y as the dependent variable.

Х	У
6	5
8	4
9	4.5
11	5

X	W
^	y
U	3
2	0
5	-1

*	У/
71	5
(1/	X7
2	50
7	8

Action!

A function is a relation where each value of the independent variable corresponds with **only one** value of the dependent variable.

OR

A function is a relation where each **x-value**

corresponds with only one y-value

The Vertical-Line Test

We can use what is called the <u>vertical-line test</u> to determine if the graph of a particular relation is a function.

If any vertical line intersects the graph of a relation more than once, then the relation is not a function.

Action!

Function or Not?

a)
$$y = 2x - 5$$

 $ye \le 5$

b) $y^2 + y^2 = 9$
 $y = \sqrt{9} - x^2$
 $y = \sqrt{9} - x^2$

c) $y = 2x^2 - 3x + 1$
 $ye \le 5$

Hey equation, are you a function?

We've figured out how to tell if a relation is a function from its mapping diagram, table of values and graph.

How can we determine if a relation is a function from its equation?

Hey equation, are you a function?

Linear Relations: y = mx + b or Ax + By = C

or

Quadratic relations:

Vertical Parabola

$$y = ax^{2} + bx + c$$

$$y = a(x - h)^{2} + k$$

$$y = a(x - s)(x - t)$$

Horizontal Parabola

$$x = ay^{2} + by + c$$

$$x = a(y-h)^{2} + k$$

$$x = a(y-s)(\mathbf{y}-t)$$

Circle Relations:

$$x^{2} + y^{2} = r^{2}$$

$$y = \pm \sqrt{r^{2} - x^{2}}$$

Hey equation, are you a function?

Basically:

- If it's a linear equation it's a function

- If it's a quadratic function in terms of y (y =) it's a function

- If it's a quadratic function in terms of x (x =) it's **NOT** a function

values of the variable

- If it's a circle it's **NOT** a function

If you can find two y-values that give the same x-value it's NOT a function!

Function

Relation

Domain

Range

Vertical Line Test

Homework!

Pg. 10: 1 - 4, 7, 9, 11

gilbertmath.com