PRACTICE - MCR3U Test #1 Introduction to Functions

Knowledge	Application	TIPS	Communication
13	15	6	10

Part A: Knowledge and Understanding

Multiple Choice: Identify the choice that best completes the statement or answers the question. [5]

- 1. The domain of the function $y = \frac{1}{x^2}$ is:
- a) $\{x \in \mathbf{R}\}$
- b) $\{x \in \mathbb{R} \mid x \neq 0\}$ c) $\{x \in \mathbb{R} \mid x \neq 0, \pm 1\}$ d) $\{y \in \mathbb{R} \mid y \neq 0\}$

- 2. The vertex of the equation $y = -3\left(x \frac{1}{2}\right)^2 + 2$ is:
- a) (-1/2, 2)

- b) (1/2, 2)
- c) (3, -1/2)

d) (3, 2)

- 3. Which of the following relations is not a function?
- a)

b)

c)

4. Which relation is not a function?

a)
$$y = 3x - 7$$

b)
$$x^2 + y^2 = 36$$

b)
$$x^2 + y^2 = 36$$
 c) $y = -2(x - 3)^2 - 9$

$$d) y = x$$

5. Which of the following is the parent function for $y = 3\sqrt{x-2} + 7$:

$$a) f(x) = x$$

$$b) f(x) = x^2$$

c)
$$f(x) = |x|$$

d)
$$f(x) = \sqrt{x}$$

- 6. State which relations are functions. *Explain.*[2]
 - a) $\{(-2, 1), (-1, 2), (0, 4), (1, 1), (2, 2)\}$

b)

7. Determine the domain and range of each relation **and** state whether the relation is a function. Explain your reasoning. **[6]**

$$a)y = -2\sqrt{x-2} + 4$$

b)
$$y = 3(x+2)^2 - 4$$

Part B: Application

1. For $f(x) = x^2 + 2$ AND g(x) = 8 - 7x, evaluate: [6]

a)
$$g(-3a + 1)$$

b)
$$g(-3a+1) - f(a+4)$$

c) x when g(x) = 5

2. For the function $f(x) = \frac{3}{4}x + 2$, determine the inverse **and** sketch the graph of the function and its

inverse. [3]

3. The function y = f(x) has been transformed to y = af[k(x - d)] + c. Determine a, k, c, and d; write the equation; and sketch the graph of the transformed function. [6]

A horizontal compression by a factor of $\frac{1}{2}$, a reflection in the x-axis, a horizontal translation 3 units to the left and a vertical translation 2 units up are applied to $f(x) = \sqrt{x}$. Set up your table using x values 0, 1, 4, 9.

Part C: Thinking/Inquiry/Problem Solving

4. A farmer has 90 m of fencing to enclose a rectangular area and divide it into two sections as shown				
Write an equation to express the total area enclosed as a function of the width. [2]				
Determine the domain and range of this area function. [2]				
Determine the dimensions that give the maximum area. [2]				

Part D: Communication

- 1. Explain how to determine the inverse of a function given: [4]
 - a) An equation.

b) A graph.

c) A set of points.

2. Review your test and ensure that you have used proper communication. Your communication mark will be based on the following rubric: [6]

* Please do NOT write on this rubric. *

Criteria	Rating			
Proper use of mathematical	0	1	2	
terminology, equal signs,	(never)	(sometimes)	(always)	
therefore statements, etc.				
Solutions are clear and well	0	1	2	
organized.	(never)	(sometimes)	(always)	
Graphs are well labelled.	0	1	2	
	(never)	(sometimes)	(always)	