$\qquad$
PRACTICE - MCR3U Test \#1 Introduction to Functions

| Knowledge | Application | TIPS | Communication |
| :---: | :---: | :---: | :---: |
| 13 | 15 | 6 | 10 |

## Part A: Knowledge and Understanding

Multiple Choice: Identify the choice that best completes the statement or answers the question. [5]

1. The domain of the function $y=\frac{1}{x^{2}}$ is:
a) $\{x \in \mathbf{R}\}$
b) $\{\mathrm{x} \in \mathbf{R} \mid \mathrm{x} \neq 0\}$
c) $\{x \in \mathbf{R} \mid x \neq 0, \pm 1\}$
d) $\{y \in \mathbf{R} \mid \mathrm{y} \neq 0\}$
2. The vertex of the equation $y=-3\left(x-\frac{1}{2}\right)^{2}+2$ is:
a) $(-1 / 2,2)$
b) $(1 / 2,2)$
c) $(3,-1 / 2)$
d) $(3,2)$
3. Which of the following relations is not a function?
a)

b)

c)

4. Which relation is not a function?
a) $y=3 x-7$
b) $x^{2}+y^{2}=36$
c) $y=-2(x-3)^{2}-9$
d) $y=x$
5. Which of the following is the parent function for $y=3 \sqrt{x-2}+7$ :
a) $f(x)=x$
b) $f(x)=x^{2}$
c) $f(x)=|x|$
d) $f(x)=\sqrt{x}$
6. State which relations are functions. Explain.[2]
a) $\{(-2,1),(-1,2),(0,4),(1,1),(2,2)\}$
b)

7. Determine the domain and range of each relation and state whether the relation is a function. Explain your reasoning. [6]
a) $y=-2 \sqrt{x-2}+4$
b) $y=3(x+2)^{2}-4$

## Part B: Application

1. For $f(x)=x^{2}+2$ AND $g(x)=8-7 x$, evaluate: [6]
a) $g(-3 a+1)$
b) $g(-3 a+1)-f(a+4)$
c) $x$ when $g(x)=5$
2. For the function $f(x)=\frac{3}{4} x+2$, determine the inverse and sketch the graph of the function and its inverse. [3]

3. The function $y=f(x)$ has been transformed to $y=a f[k(x-d)]+c$. Determine $a, k, c$, and $d$; write the equation; and sketch the graph of the transformed function. [6]

A horizontal compression by a factor of $\frac{1}{2}$, a reflection in the $x$-axis, a horizontal translation 3 units to the left and a vertical translation 2 units up are applied to $f(x)=\sqrt{x}$. Set up your table using $x$ values 0,1 , 4, 9.


## Part C: Thinking/Inquiry/Problem Solving

4. A farmer has 90 m of fencing to enclose a rectangular area and divide it into two sections as shown.

a) Write an equation to express the total area enclosed as a function of the width. [2]
b) Determine the domain and range of this area function. [2]
c) Determine the dimensions that give the maximum area. [2]

## Part D: Communication

1. Explain how to determine the inverse of a function given: [4]
a) An equation.
b) A graph.
c) A set of points.
2. Review your test and ensure that you have used proper communication. Your communication mark will be based on the following rubric: [6]

* Please do NOT write on this rubric. *

| Criteria | Rating |  |  |
| :--- | :---: | :---: | :---: |
| Proper use of mathematical <br> terminology, equal signs, <br> therefore statements, etc. | 0 <br> (never) | 1 <br> (sometimes) | 2 <br> (always) |
| Solutions are clear and well <br> organized. | 0 <br> (never) | 1 <br> (sometimes) | 2 <br> (always) |
| Graphs are well labelled. | 0 <br> (never) | 1 <br> (sometimes) | 2 <br> (always) |

