What's Going On?

Checking In

Minds on Frayer Models

Action! Function Notation

Consolidation Function Creation

Learning Goal - I will be able write equations in proper function notation and substitute numerical values and algebraic expressions into functions.

What's happening at

gilbertmath.com?

Minds on

Frayer Models

Notation, such as f(x), used to represent the value of the dependent variable for a given value of the independent variable, x.

This means that y and f(x) are interchangeable in an equation of a function.

$$y = -3x + 5$$

$$y = -3x + 5$$
 y is a function of x

Look it up!

function ('fʌŋkʃən) 2

-n

- 1.the natural action or intended purpose of a person or thing in a specific role: the function of a hammer is to hit nails into wood
- 2.an official or formal social gathering or ceremony
- 3.a factor dependent upon another or other factors: the length of the flight is a function of the weather

$$A = \frac{1}{2}bh$$

$$f(b, h) = \frac{1}{2}bh$$

 $A = \frac{1}{2}bh$ "the area of a triangle is a f(b, h) = $\frac{1}{2}bh$ function of the width of the ba and the height of the triangle" function of the width of the base

Function Notation

WHITEBOARDS

Write each equation in function form.

$$y = 3x - 6$$

$$f(x) = 3x - 6$$

$$y = 2x^2 - 4x + 1$$

 $+(x) = 2x^2 - 4x + 1$

$$y = \sqrt{x+3}$$

$$hota function$$

$$d = 4t - 5$$

$$+ (+) = 4t - 5$$

$$d = 4t - 5$$
 $+ (+) = 4t - 5$

Function Notation

WHITEBOARDS

Write each equation in function form.

$$A = \pi r^2$$

The area of a circle is a function of the length of its radius.

$$S = 180(n - 2)$$

$$f(n) = 180(n - 2)$$

The sum of the interior angles in a polygon is a function of the number of sides, n, the polygon has.

Function Notation

We can use function notation to "evaluate" functions given the value of the independent variable(s).

Example 1: Given f(x) = 2x + 5, evaluate:

a)
$$f(5)$$

 $f(6) = 2(5)+5$
 $f(6) = 10+5$
 $f(6) = 15$

b)
$$f(-2)$$

 $f(-2) = 2(-2) + 5$
 $f(-2) = -4 + 5$
 $f(-2) = 1$

Function Notation

Example 2: Given $g(x) = 2x^2 - 4x$, evaluate g(3) + g(-2).

$$g(3) = 2(3)^{2} - 4(3)$$
 $g(-2) = 2(-2)^{2} - 4(-2)$
 $g(3) = 18 - 12$ $g(-2) = 6$
 $g(3) = 6$ $g(-2) = 16$

$$9(3)+g(-2)=6+16$$

 $9(3)+g(-2)=22$

Here we evaluated g(3) and g(-2) separately and THEN added them.

Example 2: Given $g(x) = 2x^2 - 4x$, evaluate g(3) + g(-2).

$$g(3) + g(-2) = [2(3)^{2} - 4(3)] + [2(-2)^{2} - 4(-2)]$$

$$= [18 - 12] + [8 + 8]$$

$$= 6 + 16$$

$$= 22$$

Here we evaluated g(3) and g(-2) and added them at the same time!

Function Notation

Example 3: Using the following graph, determine:

a) g(7)

b) g(-2)

c) *x* when g(x) = -6

1 and 5

Consolidation

Homework!

TONIGHT

Pg. 10: 1, 2, 4, 5, 7 8b, 9b, 11, 12

gilbertmath.com