What's Going On?

Checking In Homework Logs

Minds on Round and Round We Go

Action! Factoring

Consolidation This is how we factor.

Learning Goal - I will remember how to factor all of the polynomials I could factor in Grade 10.

Checking In

F.F.M.

Get your little books.

Expand.

$$(x + 4)^{2}(x - 1)$$

$$= (x+4)(x+4)(x-1)$$

$$= (x^{2}+8x+16)(x-1)$$

$$= x^{3}+8x^{2}+16x-x^{2}-6x-16$$

$$= x^{3}+7x^{2}+8x-16$$

Minds on

Round and Round We Go

Factoring

Factor.

$$\frac{8x^3}{2x^2} - \frac{6x^2y^2 + 4x^2y}{2x^2}$$

$$=2x^{2}(4x-3y^{2}+2y)$$

Monomial Common Factor

To factor any polynomial:

- 1. Find the greatest common factor (GCF) of the coefficients.
- 2. Find the GCF of the variable factors.
- 3. "Factor out" the monomial common factor.
- 4. Possibly, keep factoring!

Factoring

Factor.

$$2x(z + 1) + 3y(z + 1)$$

Pactor.

$$2x(z+1) + 3y(z+1)$$

To binomial common factor:

1. Identify the binomial common factor.

2. Combine the two other terms into a second binomial.

3. Bracket them,.

Binomial Common Factor

Factoring

Factor.

$$2m^{2} - 3t - 6m + mt$$

$$= \frac{2m^{2} - 6m}{2m} - 3t + mt$$

$$= 2m(m-3) + t(-3+m)$$

$$= \frac{2m(m-3) + t(m-3)}{(m-3)(2m+t)}$$

Factoring by Grouping

To factor by grouping:

- 1. Group terms that have acommon factor.
- 2. Common Monomial Factor each pair of terms.
- 3. Look for a Binomial Common Factor and factor the polynomial as outlined on the previous slide.

Factor It!

$$x^2 + 9x + 20$$
positive

Find two numbers that add to give 9 and multiply to give 20.

$$y^2 + y - 6$$

+ + -

Find two numbers that add to give 1 and multiply to give -6.

 $3 + 2$
 $(y+3)(y-2)$

Factor It!

$$z^2 - 3z - 10$$

Find two numbers that add to give -3 and multiply to give -10.

1 bigger 15

 $z^2 - 3z - 10$

Find two numbers that add to $z^2 - z^2$ and $z^2 - z^2$ and

Simple Quadratics

To factor polynomials in the form $ax^2 + bx + c$ when a = 1:

- 1. Find two numbers that multiply to c and add to b.
- 2. These are your factors.
 - 3. Put them in two sets of brackets as shown.

Factor It!

$$\int_{0}^{4} \int_{0}^{4} \int_{0$$

Find two numbers that

multiply to
$$(6)(-5) = -30$$

and add to +13. + -

$$=6x^{2}-2x+15x-5$$

$$= 2x(3x-1) + 5(3x-1)$$
= $2x(3x-1) + 5(3x-1)$
= $(3x-1)(2x+5)$

Non-Simple Quadratics (Decomposition)

To factor polynomials in the form $ax^2 + bx + c$ when $a \ne 1$:

- 1. Find two numbers that add to \underline{b} and multiply to $\underline{(a)(c)}$. (Is this new?)
- 2. Break up the middle term.
- 3. Factor by grouping.

Factor It!

Difference of Squares!

$$= (x+2)(x-2) = (3x+4)(3x-4)$$

Factor It!

Perfect Square Trinomials
$$(2x)(5)2$$
 $(3x)(4)(2)$
 $\sqrt{4x^2} + 20x + \sqrt{25}$ $\sqrt{9x^2} - 24x\sqrt{16}$

"I need two numbers
that multiply to $(3x - 4)^2$
 $(4)(25) = 100$
and add to 20
 $10+10$
 $\sqrt{4x^2+10x+10x+25}$
 $= 2x(x+5)+5(2x+5)$
 $= (2x+5)(2x+5)$
 $= (2x+5)^2$

This is how we factor

Always common factor first!

*You may need to expand before you can factor... paradoxical?

This is how we factor

$$4x^{3} - 6x^{2} + 2x$$

$$= 2x(2x^{2} - 3x + 1)$$

$$= 2x(2x^{2} - 2x - x + 1)$$

This is how we factor

$$7x^2(x + 1) - x(x + 1) + 6(x + 1)$$

This is how we factor

$$5x(2-x) + 4x(2x-5) - (3x-4)$$

This is how we factor

$$4t(t^2 + 4t + 2) - 2t(3t^2 - 6t + 17)$$

Homework!

gilbertmath.com