#### What's Going On?

Checking In F.F.M.

 $Minds on f(x) = b^x$ 

Action! Transforming Exponential Functions

Consolidation  $g(x) = a \times b^{k(x-d)} + c$ 

Learning Goal - I will be able to graph transformations of exponential functions.

#### Checking In

# F.F.M.

Explain why these four equations are all 'equally steep'



#### Minds on

## **Graph It!**

$$f(x) = 0.5^x$$

$$f(x) = 2^x$$

$$f(x) = -0.5^x$$

$$f(x) = -2^x$$

#### SEE HANDOUT

$$f(x) = 0.5^{x}$$
  $f(x) = 2^{x}$   
 $f(x) = -0.5^{x}$   $f(x) = -2^{x}$ 



#### Minds on

$$f(x) = b^x$$

VX X2

The 'base' exponential function.

- y-intercept = 1
- increasing when b > 1
- decreasing when 0 < b < 1
- asymptote at y = 0

#### Action!

Remember this... g(x) = af[k(x-d)] + c

$$g(x) = a \times b^{k(x-d)} + c$$

#### Action!

$$g(x) = a \times b^{k(x-d)} + c$$

#### What did the a, k, d and c do?

| The effects of the parameters <b>a</b> , <b>k</b> , <b>d</b> and <b>c</b>         |                                                                                                                                                     |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>a</b> : reflection in the x-axis - when a is negative                          | K: reflection in the y-axis* - when k is negative                                                                                                   |
| vertical stretch or compression - stretch when  a  > 1 - compression when  a  < 1 | horizontal stretch or compression - compression when  k  > 1 - stretch when  k  < 1  *If already symmetrical about y-axis, reflection does nothing! |
| C: vertical translation - up when c is positive - down when c is negative         | d: horizontal translation  - to the right when d is positive  - to the left when d is negative                                                      |

#### Action!

$$g(x) = a \times b^{k(x-d)} + c$$

## **Graph:**

$$f(x)=2$$

$$g(x) = 2^x - 20$$

$$g(x) = -0.5(2^x)$$

$$g(x) = 2^{x-10}$$

$$g(x) = 2^{3x}$$

$$g(x) = 3(2^x)$$

SEE HANDOUT

#### Consolidation

Graphing 
$$g(x) = a \times b^{k(x-d)} + c$$

## **Graph:**

$$g(x) = -0.25(2^{-2(x+12)}) + 16$$

Steps to Graphing:

MORROW

### Homework

Pg. 251

1 - 4, 6