What's Going On?

Checking In

Minds on The CAST Rule

Action! Angle of Mine

Consolidation Working Backward.

Learning Goal - I will be able to determine and evaluate the trig ratios of angles between 0 and 360.

Minds on

The CAST Rule

Tells us when each trigonometric ratio is POSITIVE

Minds on

The CAST Rule

Use the CAST Rule to determine the sign

of each answer.

sin (150°)

cos (222°)

tan (75°)

csc (200°)

cot (95°)

sec (315°)

510

State all angles O< 0 < 0 < 360 that make the equation true.

n - 1250

9 = 135

(0) (0) (-60)

D=1200,2400

tun 300 = tan_

9=2100

300 A

tm 135° = -

P=450,225°

-(ta)
5
135°A
45°
45°

 $5in 210^{\circ} = -5in$ $4 = 30^{\circ}, 150^{\circ}$

Action!

Angle of Mine

b) Determine the primary trig raos for the principal angle.

$$Sin P = \frac{4}{5}$$
 (0) $P = \frac{3}{5}$ $tan b = \frac{4}{3}$

$$CSCP = \frac{5}{4}$$
 Sec $Q = \frac{5}{3}$ Cot $Q = \frac{5}{3}$

c) Determine the principal angle to the nearest degree.

$$5 \text{ in } 9 = 4$$
 $5 \text{ in } 9 = 4$
 $6 \text{ in } 9 = 4$
 $7 = 5 \text{ in } -1$
 $9 = 5 \text{ in }$

$$9 = \sin^{-1}(0.8) \left(9 - \cos^{-1}(0.6) \right) = \sin^{-1}(0.8) \left(9 - \cos^{-1}(0.6) \right) = \sin^{-1}(0.8) \left(9 - \cos^{-1}(0.8) \right) = \sin^{-1}(0.8) =$$

For any point P(x, y) in the Cartesian plane, the trigonometric ratios for angles in standard position can be expressed in terms of x, y and r.

- 2) Now, choose the point P(-3, 4) on the circumference of the circle.
 - a) Determine the primary trig raos for the principal angle. $\supset \mathcal{D}$

1 is always our principal orge ? We will use /3 as the related a Cute.

Sin
$$\beta = \frac{|Y|}{5}$$
 cos $\beta = \frac{|X|}{5}$ tan $\beta = \frac{|Y|}{|X|}$ X the absolute yalve symbols are used because the sign for $\beta = \frac{|Y|}{5}$ the are in $\beta = \frac{|Y|}{3}$ the don't care the sign for $\beta = \frac{|Y|}{5}$ the are in $\beta = \frac{|Y|}{5}$ the probability of $\beta = \frac{|Y|}{5}$ the absolute $\beta = \frac{|Y|}{5}$ the ab

$$Sin\theta = \frac{4}{5}$$
 $\cos\theta = -\frac{3}{5}$ $\tan\theta = -\frac{4}{3}$

b) Determine the principal angle to the nearest degree.

the are in Q2,50... H=180-R

Example 1: Sketch a circle with its centre at the origin that goes through the point P(0, 1).

Determine the radius of the circle.

Determine the primary trig raos for the principal angle.

(b)f = 0 + mf = 1 = 0 = mle fine d

Determine the principle angle to the nearest degree.

Consolidation

Working Backwards

Example 2: Determine the values of θ if $\underline{csc\theta} = -\frac{2\sqrt{3}}{3}$ and $0^{\circ} \le \theta \le 360^{\circ}$

$$\beta = \sin^{-1}\left(-\frac{3}{253}\right)$$

$$P = -60$$

We know that sin theta is negative... therefore we are in quadrants III and IV! The relative acute angle is 60.

9=300/2400

Homework