## Investigating the Properties of Sinusoidal Functions

## Open Desmos.

If there are any functions already present, push the settings button then delete all.
Click the wrench button $\mathcal{F}$ and under Trig Settings, choose the second option for x -axis labels. The button shows $\pi, 2 \pi, 3 \pi$. This will display our graph in "radians".

Graph the function $f(x)=\sin x$ by clicking in the first function box, typing " $y=$ ", clicking the "functions" button, selecting sin, then click " $x$ ".

You can zoom in and out along either axis in the program. Zoom your $y$-axis so it runs between -2 and 2. Zoom your x-axis until you see two full cycles of your function.

1. Compare your graph of the sine function with one we have done previously.

What does $\pi$ seem to represent?

$$
140^{0}
$$

2. Yesterday I mentioned that the equation for the circumference of a circle is $C=2 \pi r$.

Explain why this makes sense in light of your answer to question 1.

$$
\begin{aligned}
& \text { Because } 2 \pi=360^{\circ} \text { and there } \\
& \text { are } 360^{\circ} \text { in a circle. }
\end{aligned}
$$

3. Graph the function $\boldsymbol{f}(\boldsymbol{x})=4 \sin (3 \boldsymbol{x})+2$ and fill in the blanks below.

- The period is $120^{0}(1 / 3$ of $\sin x)$
- The equation of the axis is $\quad Y=2$
- The amplitude is $\qquad$
6
The min value is $\qquad$
- The domain is $\{\underline{X} \in \underline{\{ }\}$
- The range is $\{-2 \leq y \leq$ 鸟
- The zeroes are located at $70^{0}, 110^{0}, 190^{0}, 230^{0}, \ldots$

4. Compare your answers to question 3 with the results of our minds on. Explain what effect each value in the equation of question 3 (4, 3 and 2 ) had on the original graph of $\sin x$. Be specific and use key terms from the unit.

The 3 is chayingth prior $\frac{360}{3}$ The 4 is stretching the cue (changing te mplidhe) The 2 is shifition the curve up by 2 (hanging the
5. Delete all functions.


- The amplitude is 0.5

- The domain is $\{\underline{X} \in\{$
- The range is $\{-4.5 x y \leq-35$
- The zeroes are located at


6. Revisit your answer to question 4.

Do you still agree with what you said? Why or why not?

$$
\text { yep } \because
$$

7. Explain what effect each value in the function equation above had on the original graph of $\cos x$. Be specific and use key terms from the unit.

The $1 / 2$ compassed the mph (aplititbe is $0.5 / \frac{1}{2}$ )
The -2 changed the period $\Rightarrow \frac{360}{2}=180$, ak
reflected shoot y-axis (nooffect)
The - 4 shifted the arse Jain (equation' $y-4$ )

