Investigating the Properties of Sinusoidal Functions

Open Desmos.

If there are any functions already present, push the settings button 😳 then delete all.

Click the wrench button \checkmark and under Trig Settings, choose the second option for x-axis labels. The button shows π , 2π , 3π . This will display our graph in "radians".

Graph the function $f(x) = \sin x$ by clicking in the first function box, typing "y =", clicking the "functions" button, selecting sin, then click "x".

You can zoom in and out along **either** axis in the program. Zoom your y-axis so it runs between -2 and 2. Zoom your x-axis until you see two full cycles of your function.

1. Compare your graph of the sine function with one we have done previously. What does π seem to represent?

1400

2. Yesterday I mentioned that the equation for the circumference of a circle is $C = 2\pi r$. Explain why this makes sense in light of your answer to question 1.

Because 2TT= 360° and thee ace 360° in a liccle.

3. Graph the function $f(x) = 4 \sin(3x) + 2$ and fill in the blanks below.

- The period is 120° (1/3 of $\sin X$) - The equation of the axis is ____ - The amplitude is The max value is The min value is - The domain is $\{ \mathbf{X} \in \mathbf{N} \}$ - The range is $\{\underline{-2} \le \underline{1} \le \underline{0}\}$ - The zeroes are located at $\underline{70^\circ}, 110^\circ, 140^\circ, 230^\circ, \ldots$

4. Compare your answers to question 3 with the results of our minds on. Explain what effect each value in the equation of question 3 (4, 3 and 2) had on the original graph of sin x. Be specific and use key terms from the unit.

The 3 is changing the pariod 360 The 4 is stretching the curve (changing the amplitude) The Z is shifting the curve up by 2 (Changing the equation of the equation of the 5. Delete all functions. Graph $f(x) = \cos x$ and $f(x) = \frac{1}{2}\cos(-2x) - 4$ within the blanks below - The period is - The equation of the axis is ____ - The amplitude is 1/2 The max value is The min value is -4.5 - The domain is $\{ \underline{X} \in \overset{\frown}{D} \}$ - The range is $\{-4.5 \le y \le -3.2\}$ - The zeroes are located at

Revisit your answer to question 4.
Do you still agree with what you said? Why or why not?

yep "

7. Explain what effect each value in the function equation above had on the original graph of $\cos x$. Be specific and use key terms from the unit.

The 1/2 compressed the graph (amplitude is 0.5/2) The -2 changed the period = 360 = 180, nko seflected about yay's (no offect) The -4 shifted the arrve down (exuation: y=-4)