Introduction to Sequences and Series
 Arithmetic and Geometric Sequences

Definitions

Sequence: An ordered list of numbers.
Examples: 635, 630, 625, 620, $615 \ldots$
$128,64,32,16,8$...

Term: A number in a sequence. Subscripts are usually used to identify the positions of the terms.
Examples: $\mathrm{t}_{1}=635, \mathrm{t}_{2}=630, \mathrm{t}_{3}=625 \ldots$
Examples: $\mathrm{t}_{1}=128, \mathrm{t}_{2}=64, \mathrm{t}_{3}=32 \ldots$

Arithmetic Sequence: A sequence that has the same difference, the common difference, between any pair of consecutive terms.

Examples: $\quad 6,8,10,12,14 \ldots$
150, 141, 132, 123, 114 ...

Geometric Series: A sequence that has the same ratio, common ratio, between any pair of consecutive terms.

Examples: $4,8,16,32,64 \ldots$
2000, 1000, 500, 250, 125 ...

Recursive Sequence: A sequence for which one term (or more) is given and each successive term is determined from the previous term(s).

$$
\begin{array}{ll}
\text { Examples: } & 6,6+2,(6+2)+2,(6+2+2)+2 \ldots \\
& a, a+d,(a+d)+d,(a+d+d)+d \ldots \\
& 4,4 \times 2,(4 \times 2) \times 2,(4 \times 2 \times 2) \times 2 \ldots \\
& a, a \times r,(a \times r) \times r,(a \times r \times r) \times r \ldots
\end{array}
$$

General Term: A formula, labelled t_{n}, that expresses each term of a sequence as a function of its position. For example, if the general term is $t_{n}=2 n$, then to calculate the $12^{\text {th }}$ term $\left(t_{12}\right)$, substitute $n=12$.

$$
\begin{aligned}
\text { Examples: } & t_{n}=2 n+4 \quad O R \quad t_{n}=6+(n-1) 2 \\
& t_{n}=a+(n-1) d, \text { a represents the first term, } d \text { represents the difference between successive terms } \\
& t_{n}=4 \times 2^{n-1} \\
& t_{n}=a \times r^{n-1}, \text { a represents the first term, } r \text { represents the ratio of successive terms }
\end{aligned}
$$

Recursive Formula: A formula relating the general term of a sequence to the previous term(s).

$$
\text { Examples: } \begin{aligned}
& t_{1}=6, t_{n}=t_{n-1}+2, \text { where } n>1 \\
& t_{1}=a, t_{n}=t_{n-1}+d, \text { where } n>1 \\
& t_{1}=4, t_{n}=4 \times t_{n-1}, \text { where } n>1 \\
& t_{1}=a, t_{n}=r t_{n-1}, \text { where } n>1
\end{aligned}
$$

Worked Examples

1. Decide whether the given sequence is algebraic or geometric. Then determine the general term and the recursive formula for the sequence. Use your formulae to determine the $10^{\text {th }}$ term of the sequence.
a. $6,15,24,33,42$...

The terms in the sequence increase by 9 , therefore this is an arithmetic sequence.
The formula for the general term of an arithmetic sequence is $\mathbf{t}_{\mathrm{n}}=\mathbf{a +}(\mathbf{n - 1}) \mathbf{d}$.
For this example, $a=6$ and $d=9$.
Therefore, the general term for this example is $t_{n}=\mathbf{6 + (n - 1) 9}$ OR $t_{n}=9 n-\mathbf{3}$
The generalized recursive formula for an arithmetic sequence is $t_{1}=a, t_{n}=t_{n-1}+d$, where $n>1$. Therefore, the recursive formula for this example is $\mathbf{t}_{1}=6, t_{n-1}=t_{n-1}+$ where $n>1$.

The $10^{\text {th }}$ term in this sequence is $\mathrm{t}_{\mathrm{n}}=\mathbf{6 + ((1 0) - 1) 9 = 6 + (9) 9 = 6 + 8 1 = 8 7}$.
b. $3,-12,48,-192,768$...

The terms in the sequence are in a ratio of -4 . Therefore this is an geometric sequence.
The formula for the general term of a geometric sequence is $\mathbf{t}_{\mathrm{n}}=\mathbf{a} \times \mathbf{r}^{\mathrm{n}-1}$.
For this example, $a=3$ and $r=-4$.
Therefore, the general term for this example is $\mathbf{t}_{n}=\mathbf{3 \times (- 4) ^ { n - 1 }}$.
The generalized recursive formula for a geometric sequence is $t_{1}=a, t_{n}=r t_{n-1}$, where $n>1$. Therefore, the recursive formula for this example is $\mathbf{t}_{1}=3, t_{n}=(-4) t_{n-1}$, where $n>1$.

The $10^{\text {th }}$ term in this sequence is $\mathrm{t}_{\mathrm{n}}=3 \times(-4)^{10-1}=3 \times(-4)^{9}=\mathbf{3 \times - 2 6 2 , 1 4 4 = - \mathbf { 7 8 6 , 4 3 2 }}$

Questions

