MCR 3U Review Questions: Sequences and Series

2. An opera house has 27 seats in the first row, 34 seats in the second row, 41 seats in the third row, and so on. The last row has 181 seats..
a. How many seats are in the $10^{\text {th }}$ row?
$a / t_{1}=27$

$$
\begin{aligned}
& d=7 \\
& t_{n}=181 \\
& t_{10}=27+(9) 7 \\
& =27+63 \\
& =90 \text { cents in fou } 10!
\end{aligned}
$$

b. How many rows of seats are in the opera house?

Find n

$$
\begin{aligned}
& t_{n}=a+(n-1) d \\
& 181=27+(n-1) 7 \quad \therefore \quad a \\
& 181=27+7 n-7 \\
& 181=20+7 n \\
& 161=7 n
\end{aligned}
$$

3. Guy purchased a rare stamp for $\$ 820$ in 2001. If the value of the stamp increases by 10%

$$
\begin{aligned}
& \begin{array}{l}
820 \times 1.10 r=1.1 \\
902 \times 10 \\
t_{10}=620 \times 1.1^{9}
\end{array} \\
& =1,933.52
\end{aligned}
$$

4. Calculate the sum of each series
a. $123+118+113+\ldots-122$

*arithmetic! $t_{n}=a+(n-1) d$
We need $n!!\quad-122=123+(n-1)(-5)$
$a / t_{1}=123 \quad s_{n}=50(123-122)$
$d=-5$
$t_{n}=-122$
$1+\frac{5}{2}+\frac{23}{4}+\cdots+\frac{15625}{t^{2}}$
$*$ geometric
$r=\frac{5}{2}$ or 2.5
$a / t_{1}=1$
$t_{n}=15625$
$n_{\text {Deterefline the }}=100^{\prime \prime}$

${ }_{2}^{2}, 5, \frac{3}{8} \cdot \frac{4}{11}, \cdots$

$$
0.5,0.4,0.375 \text { 筬 } \begin{gathered}
\text { neither arithmetic } \\
\text { nor metric }
\end{gathered}
$$

$$
\begin{aligned}
& \text { numerator } \Rightarrow n \\
& \text { denominator } \Rightarrow \text { adding 3enchtime } \Rightarrow a=2 \\
& t_{n} \\
&=2+(n-1) 3 \quad t_{n}=\frac{n}{3 n-1} \\
&=2+3 n-3 \\
&=3 n-1
\end{aligned}
$$

6. The $7^{\text {th }}$ term of a geometric sequence is 3 and the $11^{\text {th }}$ term is 48 . a. Determine the $37^{\text {th }}$ term without finding the general term
$t_{7}=3 \quad t_{11}=\frac{48}{3} \quad$-fra nt to tiv, we multiplied
$t_{11}=48 \quad t_{7}=\frac{5}{3}$ busome number four times

$$
=16 \sqrt[4]{16} \quad t_{37}=3 \times 2^{30}
$$

b. Determine the general term.

$$
+39-32212255472
$$

first find a

$$
t_{n}=0.048675 \times 2^{n-1}
$$

$$
S_{29}=\frac{0.046875\left(2^{2}-1\right)}{2-1}=25165823.15
$$

7. The $7^{\text {th }}$ term in an arithmetic sequence is 465 and the $13^{\text {th }}$ term is 219 . a. Determine the $100^{\text {th }}$ term without finding the general term.

$$
\begin{aligned}
& 219-465=-246 \\
& t_{100}=465+(-41)(93) \\
& \frac{-246}{6}=-41(d) \\
& \text { 式 } 6 \text { time } 1 \text { btw } \\
& \text { b. Determine the general term. } \\
& \text { linda } \\
& t_{n}=711+(n-1)(-41) \\
& \text { add } 41 \text { to } 465
\end{aligned}
$$ 6 times $\Rightarrow a=711$

c. Determine the sum of the first 100 terms.

$$
\begin{aligned}
& S_{100}=\frac{100[2(711)+(99)(-41)]}{2} \\
& S_{100}=-131,850
\end{aligned}
$$

