New Unit

Rational Functions, Equations and Inequalities

Minds On

Asymptotes and Intervals of Increase / Decrease

Minds On

Asymptotes and Intervals of Increase / Decrease

Minds On

Asymptotes and Intervals of Increase / Decrease

Desmos Investigation

Desmos Investigation

intervals of increase and decrease

Desmos Investigation

intervals of positive and negative

Desmos Investigation

Desmos Investigation

max and min values

A linear function and its reciprocal

Both functions are negative when $x \in (-\infty,-1)$ and positive when $x \in (-1,\infty)$. The original function is increasing when $x \in (-\infty,\infty)$. The reciprocal function is decreasing when $x \in (-\infty,-1)$ or $(-1,\infty)$

A quadratic function and it's reciprocal

Both functions are negative when $x \in (-3,1)$ and positive when $x \in (-\infty, -3)$ or $(1, \infty)$. The original function is decreasing when $x \in (-\infty, -1)$ and increasing when $x \in (-1, \infty)$. The reciprocal function is increasing when $x \in (-\infty, -3)$ or (-3, -1) and decreasing when $x \in (-1, 1)$ or $(1, \infty)$.

Example 1

Given the function f(x) = 2 - x $\{(x) = -x + 2\}$

- a) Determine the domain and range, intercepts, positive/negative intervals, and increasing/decreasing intervals
- b) Use your answers for part a) to sketch the graph of the reciprocal function

$$D = \{ \times \in \mathbb{R}^3 \}$$

$$R = \{ f(x) \in \mathbb{R}^3 \}$$

$$\times : int = 2$$

$$Y - int = 2$$

Example 2

Given the function $f(x) = 9 - x^2$

- a) Determine the domain and range, intercepts, positive/negative intervals, and increasing/decreasing intervals
- b) Use your answers for part a) to sketch the graph of the reciprocal function

D=
$$\{x \in R\}$$

R= $\{x \in R\}$
Y-int = $(0,9)$
 $x:int = (3,0), (-3,0)$
 $\{x \in (-3,3)\}$
 $\{x \in (-3,3)\}$

I when $x \in (0, +\infty)$

$$f(x) = -(x^2 - 9)$$

 $f(x) = -(x+3)(x-3)$

The graph of f(x) = 3x - 4 is shown below. Sketch the graph of its reciprocal function.

The graph of f(x) = (x - 1)(x + 5) is shown below. Sketch the graph of its reciprocal function.

The graph of $f(x) = x^2 + 2$ is shown below. Sketch the graph of its reciprocal function.

Consolidation

page 254 #1-3, 5-8 (some), 9