\qquad
MAP4C - Trigonometry Review Part 1

1. Fillinthe blanks. Sch cal tor

Use the word bank below to fill in the blanks. Some words will be used more than once.

2. Evaluate on a calculator. Round to 4 decimal places.

Note: ensure your calculator is set to degrees by evaluations $\sin 45 \rightarrow$ answer should be 0.7071

$\sin 30^{\circ}=0.5$	$\cos 25^{5}=0.9063$	$\tan 60^{\circ}=1.7321$
$\sin 2^{\circ}=0.9511$	$\cos 47^{\prime}=0.6820$	$\tan 15=0.2679$

3. Use your calculator to solve for the indicated angle. Round to the nearest whole degree.

Remember: When you are solving for an angle use the $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$ buttons!

$\sin A=0.9063$		
$A=\sin ^{-1}(0.9063)$	$B=\cos ^{-1}(0.3746)$	$C=\tan ^{-1}(2.7286)$
$A=65^{-1}$	$B=2.7286$	
$\sin D=0.6231$	$E=70^{2}$	
$D=\sin ^{-1}(0.6231)$	$F=\cos ^{-1}(0.8524)$	$\tan F=1.0000$
$D=390$	$E=32^{\circ}(1.0000)$	

4. Solve for the indicated angle. Show your intermediate step.

Round your final answer to the nearest whole degree.

5. Solve for the indicated side. Show your work!

Round your final answer to one decimal place.

6. "Solve" each triangle: find the measures of all sides and angles!

Round side lengths to one decimal place and angles to the nearest whole degree.
Show all of your work!

$v=\frac{\begin{array}{l}\text { Provide your answers here } \\ 166^{\circ}\end{array}}{v=2.6 \mathrm{~cm}}$
$w=\underline{74^{\circ}} \quad=9.2 \mathrm{~cm}$
$x=90^{\circ} \quad x=9.6 \mathrm{~cm}$

$$
\tan S=\frac{16.5}{31.2}
$$

$$
\tan S=0.5288
$$

$$
\begin{aligned}
& \tan)=\operatorname{tm}^{-1}(0.5288) \\
& =-200
\end{aligned}
$$

$$
S=28^{\circ}
$$

$$
u^{2}=16.5^{2}+31.2^{2}
$$

$$
\sqrt{u^{2}}=\sqrt{1245.7}
$$

$$
u=35,3
$$

Show your work here

$$
\begin{aligned}
& \sin 74^{\circ}=\frac{w}{9.6} \\
& w=9.6 \times \sin 74^{\circ} \\
& w=9.2 \mathrm{~cm}
\end{aligned}
$$

$$
\cos 74^{\circ}=\frac{v}{9.6}
$$

$$
v=9,6 \times \cos 74^{\circ}
$$

$v=2.6 \mathrm{~cm}$

$r=\xlongequal{\begin{array}{c}\text { Provide your answers here } \\ 25^{\circ}\end{array}} y=38.5 \mathrm{~cm}$
$z=\frac{65^{\circ}}{}=81.2 \mathrm{~cm}$
$A=90^{\circ} \quad a=89.6 \mathrm{~cm}$

$$
\begin{aligned}
& \sin Y=\frac{38.5}{89.6} \\
& \sin Y=0.4297 \\
& Y=\sin ^{-1}(0.4297) \\
& Y=25^{\circ} \\
& \cos 25^{\circ}=\frac{Z}{89.6} \\
& Z=89.6 \times \cos 25^{\circ} \\
& Z=81.2
\end{aligned}
$$

7. Isaac is on the ground, waving to his friend Kayla, who is on the second floor balcony of a 6-storey apartment building.

Isaac is 25 m from the base of Kayla's apartment building. He estimates that the angle of elevation from the round to the bottom of Kayla's balcony is 15 degrees.
a. Approximately how high is Kayla's balcony above the ground?
b. How tall is the apartment building?
c. Natalie lives on the top floor. Her apartment is directly above

Kayla's. Suppose Natalie comes to the balcony to wave to Isaac. What is the angle of elevation to the bottom of Natalie's balcony?

$6 \times 6.7^{25 m}$
$=40.2 \mathrm{~m}$

$$
C \cdot \tan \theta=\frac{33.5}{25}
$$

$$
q=53^{\circ}
$$

8. To determine the height of identical power distribution towers, Joanne stands exactly halfway between the two towers and measures the angle of inclination to one of the towers. The horizontal distance between the towers is 70 m . determine the height of the towers.

