1. Solve. Round your answers to one decimal place.
a. $k^{4}=20$

b. $750=6 x^{5}$

$$
p \doteq-2.3
$$

$$
\begin{aligned}
& 3 x .200=\frac{1}{3} \pi r^{3} \times 3 \\
& \frac{600}{\pi}=\frac{\pi r^{3}}{\pi} \\
& r^{3}=191.0 \\
& r=5.8
\end{aligned}
$$

$$
\frac{3}{3} \cdot 1540=\frac{1}{2} \pi^{3} \times 3
$$

$$
\begin{aligned}
& \frac{4620}{4 \pi}=\frac{4 \pi r^{3}}{4 \pi} \\
& \sqrt[3]{r^{3}}=\sqrt[3]{\frac{4620}{4 \pi}}
\end{aligned}
$$

$$
r=9.0
$$

2. Solve each equation to one decimal place. Simplify the expression first, if possible, then use systematic trial with a calculator.
a. $2^{x}=12$
b. $3^{n}=50$
c. $\frac{5000}{500}=\frac{500(1.05)^{t}}{500}$
x is between
3.5 and 3.6
d. $2^{k}=100$
k is between bis
and 6.7
xis between 3.5 and 3.6
3. A ball is dropped and bounces several times, losing some of its rebound height after each bounch. The height reached, h , in metres, after n bounces is given by the equation $h=1.5(0.75)^{n}$.
a. What is the maximum height after
i) The first bounce?
ii) The second bounce?
iii) The fifth bounce?
b. From what height was the ball initially dropped?
c. Determine how many bounces it will take before the ball's rebound height is less than 1% of its initial drop height.

$$
\begin{aligned}
& =1.125 \mathrm{~m} \\
& h=1.5(0.75)^{5}
\end{aligned}
$$

$$
=0.36 \mathrm{~m}
$$

$$
h=1.5 \mathrm{~m}
$$

$$
\text { ii) } \begin{aligned}
\text { i. } & =\left(5(0.75)^{2}\right. \\
h & =0.84 \mathrm{~m}
\end{aligned}
$$

$$
\text { c) } 1 \% \text { of } 1.5=0.015 \mathrm{~m}
$$

$$
\frac{0.015}{1.5}=\frac{1.5(0.75)^{n}}{1.5}
$$

$$
0.01=0.75^{n}
$$

$$
\text { After } 16 \text { bounces }
$$

4. The volume, V, of a sphere is related to its radius, r, by the equation $V=\frac{4}{3} \pi r^{3}$. If it takes $42,400 \mathrm{~cm}^{3}$ $t p$ inflatesix identical balls, what is the radius of each ball?

$$
\begin{aligned}
\text { Volume } & =42400 \times 6 \\
& =254,400
\end{aligned}
$$

$$
\begin{gathered}
3 \times 254,400=\frac{4}{3} \pi \pi^{3} \times 3 \\
\frac{763200}{4 \pi}=\frac{4 \pi r^{3}}{4 \pi} \\
\sqrt[3]{r^{3}}=\sqrt[3]{60733.5} \\
r=39.3 \mathrm{~cm}
\end{gathered}
$$

