1. Solve. Round your answers to one decimal place. a. $k^4 = 20$ b. $750 = 6x^5$

2. Solve each equation to one decimal place. Simplify the expression first, if possible, then use systematic trial with a calculator.

r=17.9

a. $2^x = 12$

b. $3^n = 50$

X is between 3.5 and 3.6

X is between 3.5 and 3.6

 $\frac{c.5000}{500} = \frac{500(1.05)^{t}}{500}$ $\frac{1000}{500} = 10$ $\frac{1000}{100} = 10$ $\frac{1000}{100} = 10$ $\frac{1000}{100} = 10$

d. $2^k = 100$

k is between 6.6 and 6.7

$$\frac{4(10)^{m}}{4} = \frac{500,000}{4} \qquad \text{f.}$$

$$\frac{10^{m}}{4} = \frac{125000}{5000}$$

$$\frac{10^{m}}{5} = \frac{125000}{5000}$$

$$\frac{10^{m}}{5} = \frac{125000}{5000}$$

 $\frac{3200}{40} = \frac{40(1.35)^{b}}{40}$ $|.35^{b} = 80$ b = |4.6

- 3. A ball is dropped and bounces several times, losing some of its rebound height after each bounch. The height reached, h, in metres, after n bounces is given by the equation $h = 1.5(0.75)^n$.
 - a. What is the maximum height after
 - i) The first bounce?
 - ii) The second bounce?
 - iii) The fifth bounce?
 - b. From what height was the ball initially dropped?
 - c. Determine how many bounces it will take before the ball's rebound height is less than 1% of its initial drop height.

4. The volume, V, of a sphere is related to its radius, r, by the equation $V = \frac{4}{3}\pi r^3$. If it takes 42,400 cm³ tp inflate six identical balls, what is the radius of each ball?

Volume = 42400×6 = 254,400

3×254,400 = 4 TTr 3×35 $3 \int f^{3} = \frac{3}{60733.5}$ $\int = 39.3 \text{ cm}$