Optimizing Volume and Surface Area

Part I – Optimizing the Volume of a Square-Based Prism

Open 4C 5.6.1.

In this investigation, you will be manipulating square-based prims with fixed surface areas.

- 1. Move the point labeled "Change Surface Area" to a number you like.
- 2. Record your surface area in the table below.
- 3. Move the point labeled "Change Base Dimensions" up and down to the extremes.
- 4. Make a prediction about when the volume will be maximized.
- 5. Continue to move the "Change Base Dimensions" point, watching the volume. Get the volume as large as you can and then stop.
- 6. Record the width / length, base and volume in the table below.
- 7. Complete your table by getting values from 3 other groups.

Group	Surface Area	Width / Length	Height	Maximum Volume
Your Group				

- 8. Describe how to optimize the volume of a square-based prism.
- 9. Determine the formula for the volume of an optimized square-based prism.

Part II – Optimizing the Surface Area of a Square-Based Prism

Open **4C 5.6.2**.

In this investigation, you will be manipulating square-based prims with fixed volumes.

- 1. Move the point labeled "Change Volume" to a number you like.
- 2. Record your volume in the table below.
- 3. Move the point labeled "Change Base Dimensions" up and down to the extremes.
- 4. Make a prediction about when the surface area will be minimized.
- 5. Continue to move the "Change Base Dimensions" point, watching the surface area. Get the surface area as small as you can and then stop.
- 6. Record the width, length, base and surface area in the table below.
- 7. Complete your table by getting values from 3 other groups.

Group	Volume	Width / Length	Height	Minimum Surface Area
Your Group				

8. Describe how to optimize the surface area of a square-based prism.

9. Determine the formula for the surface area of an optimized square-based prism.

Part III – Optimizing the Volume of a Cylinder

Open **4C 5.6.3**.

In this investigation, you will be manipulating cylinders with fixed surface areas.

- 1. Move the point labeled "Change Surface Area" to a number you like.
- 2. Record your surface area in the table below.
- 3. Move the point labeled "Change Radius" up and down to the extremes.
- 4. Make a prediction about when the volume will be maximized.
- 5. Continue to move the "Change Radius" point, watching the surface area. Get the volume as large as you can and then stop.
- 6. Record the radius, height and volume in the table below.
- 7. Complete your table by getting values from 3 other groups.

Group	Surface Area	Radius	Height	Maximum Volume
Your Group				

8. Describe how to optimize the volume of a cylinder.

9. Determine the formula for the volume of an optimized cylinder.

Part IV – Optimizing the Surface Area of a Cylinder

Open 4C 5.6.4.

In this investigation, you will be manipulating cylinders with fixed volumes.

- 1. Move the point labeled "Change Volume" to a number you like.
- 2. Record your volume in the table below.
- 3. Move the point labeled "Change Radius" up and down to the extremes.
- 4. Make a prediction about when the surface area will be minimized.
- 5. Continue to move the "Change Radius" point, watching the surface area. Get the surface area as small as you can and then stop.
- 6. Record the radius, height and surface area in the table below.
- 7. Complete your table by getting values from 3 other groups.

Group	Volume	Radius	Height	Minimum Surface Area
Your Group				

8. Describe how to optimize the surface area of a cylinder.

9. Determine the formula for the surface area of an optimized cylinder.