6.6 Operations with Algebraic Vectors in $\mathbf{R}^{\mathbf{2}}$

Last day, we wrote that the vector that started at the origin and ended at $\mathrm{P}(\mathrm{a}, \mathrm{b})$ was called $\overrightarrow{O P}=(a, b)$. A second way of writing this is with the use of the unit vectors $\vec{\imath}$ and $\vec{\jmath}$. The vectors $\vec{\imath}=(1,0)$ and $\vec{\jmath}=(0,1)$ have magnitude 1 and lie on the x - and y-axes, respectively.

Example 1: a) Draw four position vectors, $\overrightarrow{O P}=(1,2), \overrightarrow{O Q}=(-3,0), \overrightarrow{O R}=(-4,-1)$ and $\overrightarrow{O S}=(2,-1)$. Write each of these vectors using the unit vectors $\vec{\imath}$ and $\vec{\jmath}$.

$$
\begin{array}{ll}
\overrightarrow{O P}=1 \vec{i}+2 \vec{j} & \overrightarrow{O R}=-4 \vec{\imath}-\vec{\jmath} \\
\overrightarrow{O Q}=-3 \vec{\imath} & \overrightarrow{O S}=2 \vec{\imath}-\vec{j}
\end{array}
$$

b) The vectors $\overrightarrow{O A}=-\vec{\imath}, \overrightarrow{O B}=\vec{\imath}+5 \vec{\jmath}, \overrightarrow{O C}=-5 \vec{\imath}+2 \vec{\jmath}$ and $\overrightarrow{O D}=2 \vec{\imath}-4 \vec{\jmath}$ have been
 written using the unit vectors $\vec{\imath}$ and $\vec{\jmath}$. Write them in component form (a, b).

$$
\begin{array}{ll}
\overrightarrow{O A}=(-1,0) & \overrightarrow{O C}=(-5,2) \\
\overrightarrow{O B}=(1,5) & \overrightarrow{O D}=(2,-4)
\end{array}
$$

Addition of Two Vectors Using Component Form

Starting with $\overrightarrow{O A}=(\mathrm{a}, \mathrm{b})$ and $\overrightarrow{O D}=(\mathrm{c}, \mathrm{d})$ with A and D both on R^{2}, we can also write $\overrightarrow{O A}=\mathrm{a} \vec{\imath}+\mathrm{b} \vec{\jmath}$ and $\overrightarrow{O D}=\mathrm{c} \vec{\imath}+\mathrm{d} \vec{\jmath}$.

add $\overrightarrow{O A}+\overrightarrow{O D}=(a+c, b+d)$

$$
=(a-c) \vec{i}+(b-d) \vec{j}
$$

When we want to multiply a scalar by a vector in component form, we must multiply each of the components by the scalar as follows:

$m \vec{p}=m(a, b)$

Example 2: Given $\vec{a}=0 \vec{A}$,
each of these vectors on the graph.

$$
\vec{a}-\vec{b}=(-3,5)
$$

Position Vectors and Magnitudes in R^{2}

If $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are two points, then the vectors $\overrightarrow{A B}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}\right)$ is its related position vector

$$
\frac{\overrightarrow{O P}, \text { and }|\overrightarrow{A B}|=\sqrt{|\overrightarrow{A B}|}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}}{}
$$

Example 3: $\mathrm{A}(-3,7), \mathrm{B}(5,22)$ and $\mathrm{C}(8,18)$ are three points in R^{2}.
a) Calculate the value of $|A B|+\mid \overrightarrow{|B C|}+\overrightarrow{|C A|}$, the perimeter of triangle $A B C$.

$$
\begin{aligned}
\vec{x}+\vec{y} & =(2 \vec{\imath}-3 \vec{\jmath})+(-4 \vec{\imath}-3 \vec{\jmath}) \\
& =-2 \vec{\imath}-6 \vec{j} \\
& =(-2,-6) \\
|\vec{x}+\vec{y}| & =\sqrt{(-2)^{2}+(-6)^{2}} \\
& =\sqrt{40} \\
& =2 \sqrt{10}
\end{aligned}
$$

$$
\begin{aligned}
\vec{x}-\vec{y} & =(2 \vec{\imath}-3 \vec{j})-(-4 \vec{\imath}-3 \vec{\jmath}) \\
& =6 \imath \\
& =(6,0) \\
|\vec{x}-\vec{y}| & =\sqrt{\left.(6)^{2}+10\right)^{2}} \\
& =\sqrt{36}
\end{aligned}
$$

