6.6 Operations with Algebraic Vectors in R²

Last day, we wrote that the vector that started at the origin and ended at P(a, b) was called

 $\overrightarrow{OP} = (a, b)$. A second way of writing this is with the use of the unit vectors \vec{i} and \vec{j} . The vectors $\vec{i} = (1, 0)$ and $\vec{j} = (0, 1)$ have magnitude 1 and lie on the x- and y-axes, respectively.

Example 1: a) Draw four position vectors, $\overrightarrow{OP} = (1,2)$, $\overrightarrow{OQ} = (-3, 0)$, $\overrightarrow{OR} = (-4, -1)$ and $\overrightarrow{OS} = (2, -1)$. Write each of these vectors using the unit vectors \vec{i} and \vec{j} .

07 = -47 - J 05 = 27 - J

b) The vectors $\overrightarrow{OA} = -\vec{i}$, $\overrightarrow{OB} = \vec{i} + 5\vec{j}$, $\overrightarrow{OC} = -5\vec{i} + 2\vec{j}$ and $\overrightarrow{OD} = 2\vec{i} - 4\vec{j}$ have been written using the unit vectors \vec{i} and \vec{j} . Write them in component form (a, b).

Addition of Two Vectors Using Component Form

Scalar Multiplication of Vectors Using Components

When we want to multiply a scalar by a vector in component form, we must multiply each of the components by the scalar as follows:

 $\overrightarrow{OP} = (a,b), \text{ we wint mOP}$ $\overrightarrow{OP} = (a,b), \text{ we wint mOP}$ $\overrightarrow{OP} = m(a,b)$ = m(ai + bj) = (ma)i + (mb)j = (ma,mb)Given $\vec{a} = \vec{OA} = (1,3) \text{ and } \vec{OB} = \vec{b} = (4, -2), \text{ determine the components of } \vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b}, \text{ and illustrate}$

 $d \vec{a} - \vec{b}$, and illustrate **Example 2**: Given $\vec{a} = \overrightarrow{OA} = (1,3)$ and $\overrightarrow{OB} = \vec{b} = (4, -2)$, determine the complete each of these vectors on the graph.

$$\vec{x} + \vec{b} = (5, 1)$$

 $\vec{x} - \vec{b} = (-3, 5)$

Example 4: For the vectors $\vec{x} = 2\vec{i} - 3\vec{j}$ and $\vec{y} = -4\vec{i} - 3\vec{j}$, determine $|\vec{x} + \vec{y}|$ and $|\vec{x} - \vec{y}|$.

 $\vec{x} + \vec{y} = (2\vec{i} - 3\vec{j}) + (-4\vec{i} - 3\vec{j})$ = -21 -61 =(-2,-6) $|\vec{x}+\vec{y}| = (-2)^2 + (-6)^2$ = \ 40 = 7.510 $\vec{X} - \vec{Y} = (2\vec{i} - 3\vec{i}) - (-4\vec{i} - 3\vec{j})$ = h1. Juh. It's just: =(60)