Learning Goal: I will be able to make connections between the laws of exponents and the laws of logarithms.

Minds On: Exponent Laws

Action: Log Laws

Consolidation: page 466 Practice + Exit Card

Today we will RAFT at the beginning of the period.

You will be interrupted for a survey at around 10:20.

After the lesson, you can RAFT a little more if you like.

Minds On

Exponent Laws

In Grade 9, you learned the Exponent Laws

The Product Rule

$$(a^x)(a^y) = \bigwedge^{x+y}$$

The Quotient Rule

$$\frac{\mathbf{a}^{\mathsf{x}}}{\mathbf{a}^{\mathsf{y}}} = \bigwedge^{\mathsf{x}-\mathsf{y}}$$

The Power of a Power Rule

$$(a^x)^y = \bigwedge^{x \cdot y}$$

Action

Mini-Investigation

Complete the table below using your calculator:

х	log x (to two decimal places)		
2			
4			
8			
16			
32			
64			
128			
256			

Action

Mini-Investigation

Complete the table below using your calculator:

х	log x (to two decimal places)
2	0.30
4	0.60
8	0.90
16	1.20
32	1.51
64	1.81
128	2.11
256	2.41

1. Given the information in the table above, attempt to determine a formula for $\log_a(mn)$.

$$log(4 \times 16) = log(64)$$
 $= 1.61$

2. Given the information in the table above, attempt to determine a formula for $\log_a \left(\frac{m}{n}\right)$.

$$\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$$

3. Given the information in the table above, attempt to determine a formula for $\log_a(m)^n$.

$$\frac{Try}{\log(4)^2} = \log 16 = 1.20$$

$$\log(4)^2 = \log 64 = 1.60$$

$$\log(6)^2 = \log(64)$$

$$\log(64)^2 = \log(64)$$

Product Law of Logarithms

$$\log_a(mn) = \left| \log_a m + \log_a n \right|$$

Quotient Law of Logarithms

$$\log_a\left(\frac{m}{n}\right) = \left|\bigcap_{n} \bigcap_{n} \bigcap_{$$

Power Law of Logarithms

$$\frac{1}{\sqrt{\log_a(m)^n}} = \bigcap_{n \in \mathbb{N}} \bigcap_{n \in \mathbb{$$

Consolidation

Exponents vs. Logarithms

Law	Exponents	Logarithms
Products	$a^m x a^n = a^{m+n}$	$\log_a(mn) = \log_a m + \log_a n$
Quotients	$\left(\frac{a^m}{a^n}\right) = a^{m-n}$	$\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$
Powers	$\left(a^{m}\right)^{n}=a^{mn}$	$\log_a m^n = n \cdot \log_a m$
Zero Exponents	$a^0 = 1$	$\log_a 1 = 0$
Negative Exponents	$a^{-m} = \left(\frac{1}{a^m}\right)$	$\log_a\left(\frac{1}{a^m}\right) = -m$

Consolidation

Applying the Laws

Fully simplify each logarithmic expression.

$$\log_3 6 + \log_3 4.5$$

$$= |_{09_3} (6^{\times}4.5)$$

$$= |_{09_3} (27)$$

 $\log_2 48 - \log_2 3$

$$= |09_{2}(\frac{48}{3})$$

$$= |09_{2}(16)$$

$$= 4$$

$$= |092(16)$$

$$\log_{5} \sqrt[3]{25}$$
 $= \sqrt{3} \sqrt{25}$
 $= -\frac{1}{3} \sqrt{25}$
 $= -\frac{1}{3} \sqrt{25}$
 $= -\frac{1}{3} \sqrt{25}$

1095 (5²)³
1095 (5²₃)

Use the properties of logarithms to express $\log_a \sqrt{\frac{x^3y^2}{w}}$ in terms of $\log_a x$, $\log_a y$ and $\log_a w$.

$$\begin{aligned} &\log_{a} \sqrt{\frac{x^{3}y^{2}}{w}} \\ &= \log_{a} \left(\frac{x^{3}y^{2}}{w}\right)^{\frac{1}{2}} \\ &= \frac{1}{2} \log_{a} \left(\frac{x^{3}y^{2}}{w}\right)^{\frac{1}{2}} \\ &= \frac{1}{2} \left(\log_{a} x^{3} + \log_{a} y^{2} - \log_{a} w\right) \\ &= \frac{1}{2} \left(3\log_{a} x + 2\log_{a} y - \log_{a} w\right) \\ &= \frac{3}{2} \log_{a} x + \log_{a} y - \frac{1}{2} \log_{a} w \end{aligned}$$

Consolidation

Practice

Pg. 475

2ef, 3, 4

6 - 10 (a few from each)