What's Going On?

Checking In

Minds on To Minimize or To Maximize?

Action! iPad Investigation

Consolidation Optimizing 2.0

Learning Goal - I will be able to optimize the perimeter and area of rectangles.

Checking In

Last Unit!

Optimization

Checking In

This Week

Tuesday - Optimizing Rectangles
Wednesday - Optimizing Square-Based Prisms
Thursday - Optimizing Cylinders
Friday - Work Period and Assignment

Minds on

To Maximize or To Minimize?

You need to enclose a **set** amount of space (**area**) for a garden. First, you need to know how much fencing you will need to purchase.

Do you want to minimize or maximize the perimeter?

Minds on

To Maximize or To Minimize?

You are trying to enclose an area for your dog in the backyard. You have purchased a **set** amount of fencing (**perimeter**).

Do you want to maximize or minimize the enclosed area?

iPad Investigations

Minimize perimeter

Maximize area

<u>Perimeter</u>

When we are trying to "optimize" the perimeter of a given area, we are looking to

<u>ΜίΛιΜί</u>2<u>e</u> the perimeter.

"Make a square"

<u>Formulae</u>

We know area Q=W $A=L^2$ OR $A=W^2$ P=4L OR P=4WQ=5A OR W=5A

<u>Area</u>

When we are trying to "optimize" the area of a space given the perimeter, we are looking to $\frac{M}{A} \times \frac{1}{1} \frac{M}{1} = \frac{2}{2}$ the area.

<u>Formulae</u>

Area on Three Sides

When we are trying to "optimize" the area of a space that will be enclosed on three sides and we are given the amount of materials available, we are looking to

Formulae

Wighth is half the length > W = 2

Wength is knowlethe width > l=2

Wength is half the "primeter" > l=2

Whish is a quarter of the "primeter" > W-1

Formulating Formal Formula

Optimizing Perimeter (Fixed Area)

Formulating Formal Formula

Optimizing Area (Fixed Perimeter)

Formulating Formal Formula

Optimizing Area on Three Sides

(Fixed Amount of Material)

Optimizing 2.0

You have 110 metres of fencing

a. If you want to enclose an area on 4 sides. What is the maximum area you can enclose on 4 sides? What are the dimensions of the area?

Q = 110 Q = 27.5 m

 $A=27.5 \times 27.5$ A=756.25 m²

Limensians are 27.5 × 27.5

Optimizing 2.0

You have 110 metres of fencing

b. What is the maximum area you can enclose on 3 sides? What are the possible dimensions of the area?

Optimizing 2.0

You have 110 metres of fencing. The fencing is in one-metre long sections that <u>cannot</u> be cut.

a. If you want to enclose an area on 4 sides. What is the maximum area you can enclose on 4 sides? What are the dimensions of the area?

Optimizing 2.0

You have 110 metres of fencing. The fencing is in one-metre long sections that <u>cannot</u> be cut.

b. What is the maximum area you can enclose on 3 sides? What are the possible dimensions of the area?

Pg. 487 - 489

1 - 3, 5, 6, 8