This unit is difficult.

Practice sooner than later.

Minds On

Definition of the Derivative

Together we will determine the derivative of

$$f(x) = 2^x$$

using the definition of the derivative.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
if $f(x) = 2^{x}$

$$f'(x) = \lim_{h \to 0} \frac{2^{x+h} - 2^{x}}{h}$$

$$= \lim_{h \to 0} \frac{2^{x}(2^{h} - 1)}{h}$$

$$= 2^{x} \cdot \lim_{h \to 0} \frac{2^{h} - 1}{h}$$

$$= 2^{x} \cdot \lim_{h \to 0} \frac{2^{h} - 1}{h}$$

$$= 2^{x} \cdot \frac{2^{0.001}}{0.001}$$

$$= 2^{x} \cdot \frac{2^{0.001}}{0.001}$$

$$= 2^{x} \cdot 0.69$$

$$f'(x) = 0.69 \cdot 2^{x}$$

Minds On

Your Turn

We are going to work together to determine an expression for the derivative of

$$f(x) = b^x$$

We know that the derivative of $f(x) = 2^x$ is 0.69^*2^x . We will refer to the constant 0.69 as k.

Determine the value of k for your assigned values of b and fill in the table below.

b	0.0001	0.001	0.01	0.1	0.25	0.5	0.75	1
k								

b	2	3	4	5	6	7	8	9
k	0.69							

$$\frac{f(x)=b^{2}}{b} \qquad \frac{f'(x)=k\cdot b^{2}}{-9.17}$$

$$\frac{-0.001}{-0.001} \qquad \frac{-0.99}{-0.59}$$

$$0.1 \qquad \frac{-2.30}{-0.69}$$

$$0.75 \qquad \frac{-0.69}{-0.29}$$

We plotted (b, k) and it "looks like In"

When
$$f(x) = b^{x}$$

 $f'(x) = k \cdot b^{x}$
 $= |b| \cdot b^{x}$

$$\frac{1}{h}$$
 is mean 5 $\frac{h-1}{h} = \ln(h)$

Action

5.2 The Derivative of the General Exponential Function

Key Ideas

- If $f(x) = b^x$, then $f'(x) = b^x \times \ln b$ If $f(x) = b^{g(x)}$, then $f'(x) = b^{g(x)} \times \ln b \times g'(x)$
- $\lim_{h\to 0} \frac{b^{h-1}}{h} = \ln b$ \rightarrow from investigation
- When you are differentiating a function that involves an exponential function, use the rules given above, along with the sum, difference, product, quotient, and chain rules as required.

Action

Example 1: Determine the derivatives of

a)
$$f(x) = 5^{x}$$

$$f'(x) = (5^{x})(n 5) = 5^{x} | n 5$$

$$= (n 5)(5^{x}) = (n 5)5^{x}$$
b) $f(x) = 5^{3x-2}$

$$f'(x) = 5^{3x-2} | n 5$$

$$= 3(5^{3x-2})| n 5$$

c)
$$3^{3}x^{6}$$

 $\xi'(x) = 3^{x} \cdot \ln 3 \cdot x^{6} + 3^{x} \cdot 6x^{5}$
 $= x^{5}, 3^{x} (x \cdot \ln 3 + 6)$

Action

- Example 2: On January 1, 1850, the population of Weaverville was 50 000. The size of the population since then can be modelled by the function $P(t) = 50\,000(0.98)^t$, where t is the number of years since January 1st, 1850.
 - a) What was the population of Weaverville on January 1, 1900?

$$t = 50$$

$$P(60) = 50000(0.94)^{50}$$

$$= 14,204$$

b) At what rate was the population of Weaverville changing on January 1, 1900? Was it increasing or decreasing at that time?

P'(
$$\pm$$
) = 50000 × 0.94 × \n 0.98

Therefore, the population was decreasing at a rate of 368 people per year.

Consolidation

Based on <u>today's lesson</u> about derivatives of exponential functions, determine the derivative of

 $f(x) = e^x$.

$$f'(x) = e^{x}$$

$$f(x)=e^{x}$$

$$f'(x)=e^{x}$$

$$=e^{x}$$

$$=e^{x}$$