Learning Goal: I will be able to write equations of a plane in vector and parametric form.

Minds On: Slope of a line formula

Action: Note and practice

Consolidation: Choose your Exit

Question

Think/Pair/Share

- 1. What different sets of spetont given information can lead fur points you to write the equation of a line (in any form)?
- 2. What do you think you would need to define a plane?

8.4 Vector and Parametric Equations of a Plane

Planes are flat surfaces that extend infinitely far in all directions. To represent planes, parallelograms are used to represent a small part of the plane, which we call π . In real life, we can use a wall, a piece of paper, or a hockey ice surface to represent a plane.

A plane can be determined if we are given any of the following four sets of information:

a) a line and a point not on the line

c) two intersecting lines

b) three noncollinear points (3 points not on a line)

d) two parallel and non-coincident lines

Vector and Parametric Equations of a Plane in R³

In R³, a plane is determined by a vector $\overrightarrow{r_o} = (x_0, y_0, z_0)$ where (x_0, y_0, z_0) is a point on the plane, and two noncollinear vectors $\overrightarrow{a} = (a_1, a_2, a_3)$ and $\overrightarrow{b} = (b_1, b_2, b_3)$.

Vector Equation of a Plane: $\vec{r} = \vec{r_0} + s\vec{a} + t\vec{b}$, s, $t \in R$ or equivalently $(x, y, z) = (x_0, y_0, z_0) + s(a_1, a_2, a_3) + t(b_1, b_2, b_3)$ **Parametric Equations of a Plane**: $x = x_0 + sa_1 + tb_1$,

$$y = y_0 + sa_2 + tb_2$$
, $z = z_0 + sa_3 + tb_3$, s, t $\in R$.

The vectors \vec{a} and \vec{b} are the direction vectors for the plane. When determining the equation of a plane, we need to direction vectors. Any pair of noncollinear vectors are coplanar, so they can be used as direction vectors for a plane.

Example 1: a) Determine a vector equation and the corresponding parametric equations for the plane that contains the points A(-1, 3, 8), B(-1, 1, 0), and C(4, 1, 1).

b) Do either of the points P(14, 1, 3) or Q(14, 1, 5) lie on this plane? $T = 76 + 5 \times 10^{-4} + 10^{-4} \times 10^{-4} = 10^{-4} \times 10^{-4} \times 10^{-4} \times 10^{-4} = 10^{-4} \times 10^{-4} \times 10^{-4} \times 10^{-4} = 10^{-4} \times 10^{-4} \times 10^{-4} \times 10^{-4} \times 10^{-4} = 10^{-4} \times 10^{-4}$

$$F = (X_0, Y_0, Z_0) + S(a_{11}a_{21}a_{31}) + t(b_{11}b_{21}b_{31})$$

Need

 $\frac{1}{2}$ direction vectors M_1 and M_2
 $\frac{1}{4}$ $\frac{1}{5}$ $\frac{$

b) P(14,1,3)
Use parametric equations
$$(14) = -1 + 5t$$

$$1 = 3 - 2s - 2t$$

$$1 = 3 - 2s - 2(3)$$

$$1 = 3 - 2s - 6$$

$$4 = -25$$

$$5 = -2$$

$$2 = 8 - 8s - 7 + 2$$
 $2 = 8 - 8s - 7 + 2$
 $3 = 8 - 8(-2) - 7(3)$
 $3 = 8 + 16 - 21$
 $3 = 24 - 21$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 = 3$
 $3 =$

$$Q(14,1,5)$$

 $X = -1+5+$
 $Y = 3-25-2+$
 $Y = 3-25-2+$

Example 2: A plane π has $\vec{r} = (6, -2, -3) + s(1, 3, 0) + t(2, 2, -1), s, t <math>\in \mathbb{R}$, as its equation. Determine the point of intersection between π and the z-axis.

Example 3: Determine the vector and parametric equations of the plane containing the point P(1, -5, 9) and the line L: $\vec{r} = (1, 1, 1) + s(-1, 1, 0)$, $s \in R$.

Find
$$m_2 = P_{\vec{l}_0} = (1, 1, 1) - (1, -5, 9)$$

$$= (1 - 1, 1 + 5, 1 - 9)$$

$$m_2 = (0, 0, -4) = 2(0, 3, -4)$$

$$m_1 = (1, 1, 1) + 5(-1, 1, 0) + t(0, 3, -4), s, t \in \mathbb{R}$$

$$X = |-s|$$

$$Y = |+s + 3t|$$

$$Z = |-4t|$$

Consolidation

Exit Question CHOOSE ONE

1. Determine the equation of the plane that contains the point A(-2, 2, 3) and the line r = m(1, -1, 7)

OR

2. Determine two pairs of direction vectors that can be used to represent the xy-plane in three-space.